Skip to main content
Log in

Effect of 935-MHz phone-simulating electromagnetic radiation on endometrial glandular cells during mouse embryo implantation

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

This study examined the impact of 935MHz phone-simulating electromagnetic radiation on embryo implantation of pregnant mice. Each 7-week-old Kunming (KM) female white mouse was set up with a KM male mouse in a single cage for mating overnight after induction of ovulation. In the first three days of pregnancy, the pregnant mice was exposed to electromagnetic radiation at low-intensity (150 μW/cm2, ranging from 130 to 200 μW/cm2, for 2- or 4-h exposure every day), mid-intensity (570 μW/cm2, ranging from 400 to 700 μW/cm2, for 2- or 4-h exposure every day) or high-intensity (1400 μW/cm2, ranging from 1200 to 1500 μW/cm2, for 2- or 4-h exposure every day), respectively. On the day 4 after gestation (known as the window of murine embryo implantation), the endometrium was collected and the suspension of endometrial glandular cells was made. Laser scanning microscopy was employed to detect the mitochondrial membrane potential and intracellular calcium ion concentration. In high-intensity, 2- and 4-h groups, mitochondrial membrane potential of endometrial glandular cells was significantly lower than that in the normal control group (P<0.05). The calcium ion concentration was increased in low-intensity 2-h group but decreased in high-intensity 4-h group as compared with the normal control group (P<0.05). However, no significant difference was found in mitochondrial membrane potential of endometrial glandular cells between low- or mid-intensity groups and the normal control group, indicating stronger intensity of the electromagnetic radiation and longer length of the radiation are required to inflict a remarkable functional and structural damage to mitochondrial membrane. Our data demonstrated that electromagnetic radiation with a 935-MHz phone for 4 h conspicuously decreased mitochondrial membrane potential and lowered the calcium ion concentration of endometrial glandular cells. It is suggested that high-intensity electromagnetic radiation is very likely to induce the death of embryonic cells and decrease the chance of their implantation, thereby posing a high risk to pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baan R, Gross Y, Lauby-Secretan B, et al. Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol, 2011,12(7):624–626

    Article  PubMed  Google Scholar 

  2. Merhi ZO. Challenging cell phone impact on reproduction: A review. J Assist Reprod Genet, 2012,29(4):293–297

    Article  PubMed  Google Scholar 

  3. Batellier F, Couty I, Picard D, et al. Effects of exposing chicken eggs to a cell phone in “call” position over the entire incubation period. Theriogenology, 2008,69(6): 737–745

    Article  PubMed  CAS  Google Scholar 

  4. Zareen N, Khan MY, Minhas LA. Dose related shifts in the developmental progress of chick embryos exposed to mobile phone induced electromagnetic fields. J Ayub Med Coll Abbottabad, 2009,21(1):130–134

    PubMed  Google Scholar 

  5. Kesari KK, Behari J. Effects of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicol Environ Chem, 2010,92(6): 1135–1147

    Article  CAS  Google Scholar 

  6. Gutschi T, Mohamad Al-Ali B, Shamloul R, et al. Impact of cell phone use on men’s semen parameters. Andrologia, 2011,43(5): 312–316

    Article  PubMed  CAS  Google Scholar 

  7. Otitoloju AA, Obe IA, Adewale OA, et al. Preliminary study on the induction of sperm head abnormalities in mice, Mus musculus, exposed to radiofrequency radiations from global system for mobile communication base stations. Bull Environ Contam Toxicol, 2010,84(1): 51–54

    Article  PubMed  CAS  Google Scholar 

  8. Pilger A, Ivancsits S, Diem E, et al. No effects of intermittent 50 Hz EMF on cytoplasmic free calcium and on the mitochondrial membrane potential in human diploid fibroblasts. Radiat Environ Biophys, 2004,43(3): 203–207

    Article  PubMed  CAS  Google Scholar 

  9. Imai N, Kawabe M, Hikage T, et al. Effects on rat testis of 1.95-GHz W-CDMA for IMT-2000 cellular phones. Syst Biol Reprod Med, 2011,57(4):204–209

    Article  PubMed  Google Scholar 

  10. Falzone N, Huyser C, Franken DR, et al. Mobile phone radiation does not induce pro-apoptosis effects in human spermatozoa. Radiat Res, 2010,174(2):169–176

    Article  PubMed  CAS  Google Scholar 

  11. Kadenbach B, Arnold S, Lee I, et al. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. J Biochim Biophys Acta-Bioenerg, 2004,1655(1–3):400–408

    Article  CAS  Google Scholar 

  12. Breckenridge DG, Stojanovic M, Marcellus RC, et al. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol, 2003,160(7):1115–1127

    Article  PubMed  CAS  Google Scholar 

  13. Oral B, Guney M, Ozguner F, et al. Endometrial apoptosis induced by a 900-MHz mobile phone: preventive effects of vitamins E and C. Adv Ther, 2006,23(6):957–973

    Article  PubMed  CAS  Google Scholar 

  14. Paulraj R, Behari J. The effect of low level continuous 2.45 GHz waves on enzymes of developing rat brain. Electromagn Biol Med, 2002,21(3): 221–231

    Article  CAS  Google Scholar 

  15. Paulraj R, Behari J, Rao AR. Effect of amplitude modulated RF radiation on calcium ion efflux and ODC activity in chronically exposed rat brain. Indian J Biochem Biophys, 1999,36(5):337–340

    PubMed  CAS  Google Scholar 

  16. Csordas G, Renken C, Varnai P, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol, 2006,174(7):915–921

    Article  PubMed  CAS  Google Scholar 

  17. De Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 2008, 456(7222):605–610

    Article  PubMed  Google Scholar 

  18. Hayashi T, Rizzuto R, Hajnoczky G, et al. MAM: more than just a housekeeper. Trends Cell Biol, 2009,19(2): 81–88

    Article  PubMed  CAS  Google Scholar 

  19. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science, 2003,300(5616): 135–139

    Article  PubMed  CAS  Google Scholar 

  20. Walter L, Hajnoczky G. Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr, 2005,37(3):191–206

    Article  PubMed  CAS  Google Scholar 

  21. Yang J, Zhang YZ, Liu WH. Effect of 935 MHz microwave electromagnetic fields on meiotic maturation of mouse oocytes. Med J Wuhan Univer (Chinese), 2008,29(4):519–523

    CAS  Google Scholar 

  22. Yang J, Zhang YZ, Liu WH. Effect of 935 MHz microwave electromagnetic fields on the embryo implantation of mouse. Reprod Contracept (Chinese), 2008,28(2):80–83

    Google Scholar 

  23. Perry SW, Norman JP, Barbieri J, et al. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques, 2011,50(2):98–102

    Article  PubMed  CAS  Google Scholar 

  24. Susa M, Pavicic’ I. Effects of radiofrequency electromagnetic fields on mammalian spermatogenesis. Arh Hig Rada Toksikol, 2007,58(4):449–459

    Article  PubMed  Google Scholar 

  25. Aitken RJ, Bennetts LE, Sawyer D, et al. Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl, 2005,28(3):171–179

    Article  PubMed  CAS  Google Scholar 

  26. Falzone N, Huyser C, Fourie F, et al. In vitro effect of pulsed 900MHz GSM radiation on mitochondrial membrane potential and motility of human spermatozoa. Bioelectromagnetics, 2008,29(4):268–276

    Article  PubMed  Google Scholar 

  27. Zhao TY, Zou SP, Knapp PE. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. J Neurosci lett, 2007,412(1): 34–38

    Article  CAS  Google Scholar 

  28. Zhang H, Zhang J, Chen Y, et al. Influence of intracellular Ca2+, mitochondria membrane potential, reactive oxygen species, and intracellular ATP on the mechanism of microcystin-LR induced apoptosis in Carassius auratus lymphocytes in vitro. Environ Toxicol, 2007,22(6): 559–564

    Article  PubMed  CAS  Google Scholar 

  29. Carafoli E. Calcium-a universal carrier of biological signals. FEBS J, 2005,272(5):1073–1089

    Article  PubMed  CAS  Google Scholar 

  30. Amat A, Rigau J, Waynant RW, et al. The electric field induced by light can explain cellular responses to electromagnetic energy: A hypothesis of mechanism. J Photochem Photobiol B, 2006,82(2):152–160

    Article  PubMed  CAS  Google Scholar 

  31. Xia HJ, Yang G. Inositol 1, 4, 5-trisphosphate 3-kinases: functions and regulations. Cell Res, 2005,15(2):83–91

    Article  PubMed  CAS  Google Scholar 

  32. Qin YH, Li TD, Sheng H. Protective effect of naloxone on mitochondrial membranal potential of hypoxic myocardial cells and apoptosis. J Clin Rehabil Tissue Engineering Res (Chinese), 2007,11(8):1573–1576

    CAS  Google Scholar 

  33. Shi JH, Ju Q, Yin XP, et al. The effect of Hydrochloride small fold on intracellular free calcium and mitochondrial membrane potential of the base HaCaT. Chin J Dermatol (Chinese), 2005,38(2):105–107

    CAS  Google Scholar 

  34. Apáti A, Jánossy J, Brózik A, et al. Effects of Intracellular Calcium on Cell Survival and the MAPK Pathway in a Human Hormone-Dependent Leukemia Cell Line (TF-1). JAnn N Y Acad Sci, 2003,1010(1):70–73

    Article  Google Scholar 

  35. Rao VS, Titushkin IA, Moros EG, et al. Non-thermal effects of radiofrequency-field exposure on calcium dynamics in stem cell-derived neuronal cells: elucidation of calcium pathways. Radiat Res, 2008,169(3):319–329

    Article  PubMed  CAS  Google Scholar 

  36. Zhao YL, Song JP, Yang YH, et al. Effect of microwave irradiation of different densities on Ca2+, Mg2+-ATPase activity of mouse brain. Chin J Aerospace Med, 2000,11(2): 101–104

    Google Scholar 

  37. Philippova TM, Novoselov VI, Alekseev SI. Influence of microwaves on different types of receptors and the role of peroxidation of lipids on receptor-protein shedding. Bioelectromagnetics, 1994,15(3):183–192

    Article  PubMed  CAS  Google Scholar 

  38. Hossmann KA, Hermann DM. Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics, 2003,24(1):49–62

    Article  PubMed  CAS  Google Scholar 

  39. Paulraj R, Behari J. Radio frequency radiation effects on protein kinase C activity in rats’ brain. Mutat Res, 2004,545(1–2):127–130

    PubMed  CAS  Google Scholar 

  40. Bauréus KCL, Sommarin M, Persson BRR, et al. Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics, 2003,24(6): 395–402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmin Zheng  (郑新民).

Additional information

This work was supported by the National Natural Science Foundation of China (No. 30670509).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Zheng, X., Qu, Z. et al. Effect of 935-MHz phone-simulating electromagnetic radiation on endometrial glandular cells during mouse embryo implantation. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 32, 755–759 (2012). https://doi.org/10.1007/s11596-012-1030-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-012-1030-6

Key words

Navigation