Isoflurane enhances the expression of cytochrome C by facilitation of NMDA receptor in developing rat hippocampal neurons in vitro

  • Yilin Zhao (赵以林)
  • Xiaogao Jin (金小高)
  • Jintao Wang (王金韬)
  • Lei Tan (谭 蕾)
  • Shiyong Li (李世勇)
  • Ailin Luo (罗爱林)


This study examined the effects of clinically relevant concentrations of isoflurane on the amplitude of NMDA receptor current (INMDA) and the expression of cytochrome C in cultured developing rat hippocampal neurons. The hippocampi were dissected from newborn Sprague-Dawley rats. Hippocampal neurons were primarily cultured for 5 days and then treated with different concentrations of isoflurane [(0.25, 0.5, 0.75, 1 minimum alveolar concentration (MAC))]. The peak of INMDA was recorded by means of the whole cell patch clamp technique. The cytochrome C level was detected by Western blotting and quantitative real-time PCR. Our results showed that isoflurane (0.25, 0.5, 0.75 and 1 MAC) potentiated the amplitude of INMDA by (116±8.8)%, (122±11.7)%, (135±14.3)% and (132±14.6)%, respectively, and isoflurane increased the mRNA expression of cytochrome C in a concentration-dependent manner. The cytochrome C mRNA expression reached a maximum after 0.5 MAC isoflurane stimulation for 6 h (P<0.05). It was concluded that isoflurane enhances the expression of cytochrome C in cultured rat hippocampal neurons, which may be mediated by facilitation of NMDA receptor.

Key words

inhalation anesthetic isoflurane hippocampus developing neurons calcium NMDA receptor current 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen JQ, Cammarata PR, Baines CP, et al. Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications. Biochim Biophys Acta, 2009,1793(10):1540–1570PubMedCrossRefGoogle Scholar
  2. 2.
    Tamilselvan J, Jayaraman G, Sivarajan K, et al. Age-dependent upregulation of p53 and cytochrome C release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid. Free Radic Biol Med, 2007,43(12):1656–1669PubMedCrossRefGoogle Scholar
  3. 3.
    Zemlyak I, Sapolsky R, Gozes I. NAP protects against cytochrome C release: inhibition of the initiation of apoptosis. Eur J Pharmacol, 2009,618(1–3):9–14PubMedCrossRefGoogle Scholar
  4. 4.
    Mohan S, Abdul AB, Abdelwahab SI, et al. Typhonium flagelliforme induces apoptosis in CEMss cells via activation of caspase-9, PARP cleavage and cytochrome c release: its activation coupled with G0/G1 phase cell cycle arrest. J Ethnopharmacol, 2010,131(3):592–600PubMedCrossRefGoogle Scholar
  5. 5.
    Xiang Q, Tan L, Zhao YL, et al. Isoflurane enhances spontaneous Ca(2+) oscillations in developing rat hippocampal neurons in vitro. Acta Anaesthesiol Scand, 2009,53(6):765–773PubMedCrossRefGoogle Scholar
  6. 6.
    Zhang G, Dong Y, Zhang B, et al. Isoflurane-induced caspase-3 activation is dependent on cytosolic calcium and can be attenuated by memantine. J Neurosci, 2008,28(17):4551–4560PubMedCrossRefGoogle Scholar
  7. 7.
    Xiang Q, Tan L, Zhao Y, et al. Ketamine: the best partner for isoflurane in neonatal anesthesia? Med Hypotheses, 2008,71(6):868–871PubMedCrossRefGoogle Scholar
  8. 8.
    Wei H, Liang G, Yang H, et al. The common inhalational anesthetic isoflurane induces apoptosis via activation of inositol 1,4,5-trisphosphate receptors. Anesthesiology, 2008,108(2):251–260PubMedCrossRefGoogle Scholar
  9. 9.
    Niizuma K, Yoshioka H, Chen H, et al. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta, 2010,1802(1): 92–99PubMedGoogle Scholar
  10. 10.
    Zhang Y, Dong Y, Wu X, et al. The mitochondrial pathway of anesthetic isoflurane-induced apoptosis. J Biol Chem, 2010,285(6):4025–4037PubMedCrossRefGoogle Scholar
  11. 11.
    Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci, 2007,8(6):413–426PubMedCrossRefGoogle Scholar
  12. 12.
    Carroll RC, Zukin RS. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci, 2002,25(11):571–577PubMedCrossRefGoogle Scholar
  13. 13.
    Yu SY, Wu DC, Liu L, et al. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J Neurochem, 2008, 106(2):889–899PubMedCrossRefGoogle Scholar
  14. 14.
    Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci, 2010,11(10): 682–696PubMedCrossRefGoogle Scholar
  15. 15.
    Lamsa K, Palva JM, Ruusuvuori E, et al. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus. J Neurophysiol, 2000,83(1):359–366PubMedGoogle Scholar
  16. 16.
    Xie Z, Herring BE, Fox AP. Excitatory and inhibitory actions of isoflurane in bovine chromaffin cells. J Neurophysiol, 2006,96(6):3042–3050PubMedCrossRefGoogle Scholar
  17. 17.
    Yuantao LI, Changbin KE, Jingli YANG, et al. The effect of nitrous oxide and isoflurane on the total RNA yield from the cochlea of the rats. J Huazhong Univ Sci Technol [Med Sci], 2007,27(5):614–616CrossRefGoogle Scholar
  18. 18.
    Ni MR, O’Gorman DA. Anesthesia in pregnant patients for nonobstetric surgery. J Clin Anesth, 2006,18(1):60–66CrossRefGoogle Scholar
  19. 19.
    Pugh JR, Jahr CE. Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity. J Neurosci, 2011,31(2):565–574PubMedCrossRefGoogle Scholar
  20. 20.
    Leinekugel X, Medina I, Khalilov I, et al. Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron, 1997,18(2):243–255PubMedCrossRefGoogle Scholar
  21. 21.
    Inan S, Wei H. The cytoprotective effects of dantrolene: a ryanodine receptor antagonist. Anesth Analg, 2010, 111(6):1400–1410PubMedCrossRefGoogle Scholar
  22. 22.
    Kobayashi T, Kuroda S, Tada M, et al. Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury. Brain Res, 2003,960(1–2):62–70PubMedCrossRefGoogle Scholar
  23. 23.
    Ferrand-Drake M, Zhu C, Gido G, et al. Cyclosporin A prevents calpain activation despite increased intracellular calcium concentrations, as well as translocation of apoptosis-inducing factor, cytochrome c and caspase-3 activation in neurons exposed to transient hypoglycemia. J Neurochem, 2003,85(6):1431–1442PubMedCrossRefGoogle Scholar
  24. 24.
    Brambrink AM, Evers AS, Avidan MS, et al. Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology, 2010,112(4):834–841PubMedCrossRefGoogle Scholar
  25. 25.
    Mazoit JX, Roulleau P, Baujard C. Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain: isoflurane or ischemia-reperfusion? Anesthesiology, 2010,113(5):1245–1246PubMedCrossRefGoogle Scholar
  26. 26.
    Yuan Q, Ray RM, Johnson LR. Polyamine depletion prevents camptothecin-induced apoptosis by inhibiting the release of cytochrome C. Am J Physiol Cell Physiol, 2002,282(6):C1290–C1299PubMedGoogle Scholar

Copyright information

© Huazhong University of Science and Technology and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yilin Zhao (赵以林)
    • 1
  • Xiaogao Jin (金小高)
    • 1
  • Jintao Wang (王金韬)
    • 1
  • Lei Tan (谭 蕾)
    • 1
  • Shiyong Li (李世勇)
    • 1
  • Ailin Luo (罗爱林)
    • 1
  1. 1.Department of Anesthesiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations