Advertisement

Identification and distribution of the clinical isolates of imipenem-resistant Pseudomonas aeruginosa carrying metallo-β-lactamase and/or class 1 integron genes

  • Xi Cheng (程 曦)
  • Pinjia Wang (王频佳)
  • Yue Wang (王 跃)
  • Hong Zhang (张 红)
  • Chuanmin Tao (陶传敏)
  • Weiqing Yang (杨维青)
  • Mei Liu (刘 梅)
  • Wenxiang Jia (贾文祥)Email author
Article

Summary

To investigate the distribution of the genes of two major metallo-β-lactamases (MBL; i.e., IMP and VIM) and class 1 integrons (intI) in the clinical imipenem-resistant Pseudomonas aeruginosa, a total of 65 isolates, from a university hospital in Sichuan between December 2004 and April 2005 were screened for MBL genes by PCR using primers specific for bla IMP-1 , bla VIM and bla VIM-2 genes. The MBL-positive isolates were further assessed for class 1 integrons by PCR using specific primers. The nucleotide sequences of several PCR products were also determined. The results revealed that the bla VIM gene was found in 81.5% (53/65) of all isolates, bla VIM-2 gene was found in only 1 isolate and the intI gene was observed in 45.3% (24/53) of bla VIM -positive isolates. One isolate carried simultaneously both bla IMP-1 and intI genes, and to the best of our knowledge this is the first report of such isolate in southwest China. These observations highlight that the genes for VIM β-lactamase and class 1 integrons were predominantly present among the imipenem-resistant P. aeruginosa tested, confirming the current widespread threat of imipenem-resistant, integron-borne P. aeruginosa.

Key words

Pseudomonas aeruginosa metallo-β-lactamases integron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shiri N V, Ronen B A, Yehuda C. Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr Opin Infect Dis, 2005,18(4):306–313CrossRefGoogle Scholar
  2. 2.
    Livermore D M, Woodford N. Carbapenemases: a problem in waiting? Curr Opin Microbiol, 2000,3(5):489–495PubMedCrossRefGoogle Scholar
  3. 3.
    Queenan A M, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev, 2007,20(3):440–458PubMedCrossRefGoogle Scholar
  4. 4.
    Boucher Y, Labbate M, Koenig J E et al. Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trend Microbiol, 2007,15(7):301–309CrossRefGoogle Scholar
  5. 5.
    Yang Q, Wei Q Z, Yu Y S et al. Study on the VIM-2 metallo-beta-lactamase-producing Pseudomonas aeruginosa strains in intensive care unit. Chin J Lab Med (Chinese), 2004,27(10):678–682Google Scholar
  6. 6.
    Zhao Z W, Zhong W N, Ma W. Clinical analysis on an outbreak of ventilator-associated pneumonia caused by metallo-β-lactamase-producing Pseudomonas aeruginosa in respiratory intensive care unit. Chin J Resp Critical Care Med (Chinese), 2006,5(3):168–171Google Scholar
  7. 7.
    Yang W Q, Shi L, Yin X L et al. Distribution and identification of class 1 integrons and integrated gene cassettes in clinical Pseudomonas aeruginosa in different geographic regions. Chin J Antibiot (Chinese), 2006,31(1):15–18Google Scholar
  8. 8.
    Senda K, Arakawa Y, Ichiyama S et al. PCR detection of metallo-β-lactamase gene (bla IMP) in gram-negative rods resistant to broad-spectrum β-lactams. J Clin Microbiol, 1996,34(12):2909–2913PubMedGoogle Scholar
  9. 9.
    Watanabe M, Iyobe S, Inoue M et al. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother, 1991,35(1):147–151PubMedGoogle Scholar
  10. 10.
    Cornaqlia G, Mazzariol A, Lauretti L et al. Hospital outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-1, a novel transferable metallo-β-lactamase. Clin Infect Dis, 2000,31(5):1119–1125CrossRefGoogle Scholar
  11. 11.
    Zhang Y B, Song s D, Qi W et al. Detection of metallo-β-lactamase genes (Imp-1, Vim-1 and Vim-2) by PCR in clinical isolates of imipenem-resistant Pseudomonas Aeruginosa. Tianjing Med J, 2003,30(3):131–133Google Scholar
  12. 12.
    Chen R, Peng X M, Zhu J X et al. VIM-2 metallo-β-lactamase producing Pseudomonas aeruginosa in brun wards. Clin J Nosocomiol, 2006,16(7):734–737Google Scholar
  13. 13.
    Xu Y H, Shen J L, Yang B X et al. Detection of metallo-beta-lactamase as well as loss of out membrane protein from Pseudomonas aeruginosa. Clin J Nosocomiol, 2005,15(10):1085–1089Google Scholar
  14. 14.
    Li X Z. Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms. Int J Antimicrob Agents, 2005,25(6):453–463PubMedCrossRefGoogle Scholar
  15. 15.
    Li X Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs, 2004,64(2):159–204PubMedCrossRefGoogle Scholar
  16. 16.
    Maniati M, Ikonomidis A, Mantzana P et al. A highly carbapenem-resistant Pseudomonas aeruginosa isolate with a novel bla VIM-4/bla PIb integron overexpresses two efflux pumps and lacks OprD. J Antimicrob Chemother, 2007,60(1):132–135PubMedCrossRefGoogle Scholar

Copyright information

© Huazhong University of Science and Technology and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Xi Cheng (程 曦)
    • 1
  • Pinjia Wang (王频佳)
    • 1
  • Yue Wang (王 跃)
    • 1
  • Hong Zhang (张 红)
    • 1
  • Chuanmin Tao (陶传敏)
    • 2
  • Weiqing Yang (杨维青)
    • 3
  • Mei Liu (刘 梅)
    • 2
  • Wenxiang Jia (贾文祥)
    • 2
    Email author
  1. 1.Department of Microbiology and Immunology, School of Laboratory MedicineChengdu Medical CollegeChengduChina
  2. 2.Department of Microbiology, West China School of Preclinical and Forensic MedicineSichuan UniversityChengduChina
  3. 3.Institute of Clinical Laboratory MedicineGuangdong Medical CollegeZhanjiangChina

Personalised recommendations