Skip to main content
Log in

Corrosion Resistance of Steel in Cracked Reinforced Concrete after Electro-depositon Treatment

  • Cementitious materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

An electro-deposition method has been recently proposed to repair cracked reinforced concrete. To evaluate the corrosion resistance of the reinforcing steel in cracked concrete, three different parameters including type of auxiliary electrode, electrode distance, and current density were studied. Tafel polarization curve was used to evaluate the corrosion resistance of the steel. Self-corrosion potential and corrosion current of the steel were tested. The results indicate that the corrosion resistance improvement of the reinforcing steel is optimal as prism titanium mesh is applied as auxiliary electrode, followed by the flaky titanium mesh and the column titanium bar. When the electrode distance is 60 mm, the corrosion resistance improvement of the reinforcing steel is optimal, and with 80 mm electrode distance, the corrosion resistance improvement is the poorest. The property falls in between them when 40 mm electrode distance is used. Moreover, the corrosion resistance improvement of the reinforcing steel increases as the current density goes up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang S, Yao Y, Andrade C, et al. Recent Durability Studies on Concrete Structure[J]. Cem. Concr. Res., 2015, 78(12): 143–154

    Article  CAS  Google Scholar 

  2. Kessy J G, Alexander M G, Beushausen H. Concrete Durability Standards: International Trends and the South African Context[J]. J. S. Afr. Inst. Civ. Eng., 2015, 57(1): 47–58

    Article  Google Scholar 

  3. Khan I, Francois R, Castel A. Prediction of Reinforcement Corrosion Using Corrosion Induced Cracks Width in Corroded Reinforced Concrete Beams[J]. Cem. Concr. Res., 2014, 56(2): 84–96

    Article  CAS  Google Scholar 

  4. James M N, Hattingh D G. Case Studies in Marine Concentrated Corrosion[J]. Eng. Fail. Anal., 2015, 47(1): 1–15

    Article  CAS  Google Scholar 

  5. Liu R, Jiang L, Huang G, et al. The Effect of Carbonate and Sulfate Ions on Chloride Threshold Level of Reinforcement Corrosion in Mortar with/without Fly Ash[J]. Constr. Build. Mater., 2016, 113(6): 90–95

    CAS  Google Scholar 

  6. Michel A, Pease B J, Peterová A, et al. Penetration of Corrosion Products and Corrosion-Induced Cracking in Reinforced Cementitious Materials: Experimental Investigations and Numerical Simulations[J]. Cem. Concr. Compos., 2014, 47(3): 75–86

    Article  CAS  Google Scholar 

  7. Jafferji H, Sakulich A R, Schiffman J D. Preliminary Study on Mitigating Steel Reinforcement Corrosion with Bioactive Agent [J]. Cem. Concr. Res., 2016, 69(5): 9–17

    Article  CAS  Google Scholar 

  8. Alghamdi S A, Ahmad S. Service Life Prediction of RC Structures Based on Correlation between Electrochemical and Gravimetric Reinforcement Corrosion Rates[J]. Cem. Concr. Compos., 2014, 47(3): 64–68

    Article  CAS  Google Scholar 

  9. Kim H R, Choi W C, Yoon S C, et al. Evaluation of Bond Properties of Reinforced Concrete with Corroded Reinforcement by Uniaxial Tension Testing[J]. Int. J. Concr. Struct. Mater., 2016, 10(3): 43–52

    Article  CAS  Google Scholar 

  10. Maruthapandian V, Muralidharan S, Saraswathy V. Spinel NiFe2O4 Based Solid State Embeddable Reference Electrode for Corrosion Monitoring of Reinforced Concrete Structures[J]. Constr. Build. Mater., 2016, 107(3): 28–37

    Article  CAS  Google Scholar 

  11. Jin M, Jiang L, Bai S, et al. Research on the Influence of Distance between the Improved Ag/AgCl RE and the Steel on the Corrosion Evaluation in Concrete[J]. Int. J. Electrochem. Sci., 2016, 11(8): 7980–79080

    Google Scholar 

  12. Liu M, Cheng X, Li X, et al. Effect of Carbonation on the Electrochemical Behavior of Corrosion Resistance Low Alloy Steel Rebars in Cement Extract Solution[J]. Constr. Build. Mater., 2017, 130(1): 193–201

    Article  CAS  Google Scholar 

  13. Yang L, Xu Y, Zhu Y, et al. Evaluation of Interaction Effect of Sulfate and Chloride Ions on Reinforcements in Simulated Marine Environment Using Electrochemical Methods[J]. Int. J. Electrochem. Sci., 2016, 11(7): 6 943–6 958

    Article  CAS  Google Scholar 

  14. Feng H, Cui L, Zhang M. Steel Corrosion Behavior Measurement Based on Electrochemical Approach[J]. Int. J. Electrochem. Sci., 2016, 11(5): 4 658–4 666

    Article  CAS  Google Scholar 

  15. Jin M, Xu J, Jiang L, et al. Electrochemical Characterization of a Solid Embeddable Ag/AgCl Reference Electrode for Corrosion Monitoring in Reinforced Concrete[J]. Electrochem., 2014, 82(12): 1 040–1 046

    Article  CAS  Google Scholar 

  16. Jin M, Jiang L, Xu J, et al. Electrochemical Characterization of Solid Ag/AgCl Reference Electrode with Different Electrolytes for Corrosion Monitoring of Steel in Concrete[J]. Electrochem., 2016, 84(6): 383–389

    Article  CAS  Google Scholar 

  17. Otsuki N, Ryou J S. Use of Electrodeposition for Repair of Concrete with Shrinkage Cracks[J]. Mater. Civ. Eng., 2001, 13(2): 136–142

    Article  CAS  Google Scholar 

  18. Chu H, Jiang L, Xiong C, et al. Use of Electrochemical Method for Repair of Concrete Cracks[J]. Constr. Build. Mater., 2014, 73: 58–66

    Article  Google Scholar 

  19. Chu H, Jiang L, You L, et al. Infuence of Mineral Admixtures on the Electro-Deposition Healing Effect of Concrete Cracks[J]. J. Wuhan Univ. Technology-Mater. Sci. Ed., 2014, 29(6): 1 219–1 224

    Article  CAS  Google Scholar 

  20. Ryou J S, Otsuki N. Crack Closure of Reinforced Concrete by Electrodeposition Technique[J]. Cem. Concr. Res., 2002, 32(1): 159–164

    Article  Google Scholar 

  21. Ryou J S, Monteiro P. Electrodeposition as a Rehabilitation Method for Concrete Materials[J]. Can. J. Civ. Eng., 2004, 31(5): 776–781

    Article  CAS  Google Scholar 

  22. Ryou J S, Otsuki N. Experimental Study on Repair of Concrete Structural Members by Electrochemical Method[J]. Scripta Materialia, 2005, 52: 1 123–1 127

    Article  CAS  Google Scholar 

  23. Chu H, Jiang L, Huang X. Study on Carbonation of Concrete after Eletrodeposition[J]. Mater. Rev., 2006, 20(4): 145–147 (in Chinese)

    Google Scholar 

  24. Chu H, Wang P, Jiang L. Advances in Research on Electrodeposition Method for Repair of Concrete Cracks[J]. Mater. Rev., 2010, 24(11): 120–123 (in Chinese)

    CAS  Google Scholar 

  25. Chu H, Jiang L, Hua W. Influence of Accessorial Electrode and Distance on Electrodeposition Effect[J]. J. Build. Mater., 2005, 8(4): 456–461(In Chinese)

    CAS  Google Scholar 

  26. Huang T, Huang X, Wu P. Review of Recent Developments of Electrochemical Chloride Extraction on Reinforced Concrete in Civil Engi-neering[J]. Int. J. Electrochem. Sci., 2014, 9(5): 4 589–4 597

    Google Scholar 

  27. Polder R B, Walker R J, Page C L. Electrochemical Desalination of Cores from a Reinforced Concrete Coastal Structure[J]. Mag. Concr. Res., 1995, 49(173): 321–327

    Article  Google Scholar 

  28. Ihekwaba N M, Hope B B, C M Hanssont. Pull-out and Bond Degradation of Steel Rebars in ECE Concrete[J]. Cem. Concr. Res., 1996, 26(2): 267–282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqiang Chu  (储洪强).

Additional information

Funded by the National Natural Science Foundation of China (Nos.51778209, 51609075), and the National Key R&D Program of China (No. 2016YFC0401804)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, H., Pan, C., Xiong, C. et al. Corrosion Resistance of Steel in Cracked Reinforced Concrete after Electro-depositon Treatment. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 1127–1135 (2019). https://doi.org/10.1007/s11595-019-2169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2169-9

Key words

Navigation