Skip to main content
Log in

Simulation of Tensile Behaviors of Bamboo-like Carbon Nanotubes Based on Molecular Structural Mechanics Approach Combining with Finite Element Analysis

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A molecular structural mechanics approach combining with finite element analysis (MSM/ FEA) was applied to study the microstructure and tensile behaviors of bamboo-like carbon nanotubes (BCNTs). The mathematical model of tensile behaviors of BCNTs was established based on molecular structural mechanics theory. The deformations of BCNTs, with different diameters and compartments set based on the experimental investigation on BCNT structures synthesized by chemical vapor depositon, under tensile load, were analyzed with ANSYS programmed. Results show that the BCNTs have good tensile properties, and those Young’s modulus can reach 0.84 Tpa. Through the analysis, it can be found that the Young’s modulus of BCNTs depends on the diameters and the length of compartment, which is in good agreement with our experimental tests for the tensile performances of individual BCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang J, Yan S, Bao R, et al. Facile Fabrication of Multi–Walled Carbon Nanotubes and Its Enhancement on Thermally Conductive Adhesive Applied in Heat Dissipation Devices[J]. Mater. Design, 2013, 5: 598–604

    Article  Google Scholar 

  2. Shulaker MM, Hills G, Patil N, et al. Carbon Nanotube Computer[J]. Nature, 2013, 7 468: 526

    Article  Google Scholar 

  3. Sun X, Xu Y, Ding P, et al. Superior Lithium Storage of the Carbon Modified Hybrid of Manganese Monoxide and Carbon Nanotubes[J]. Mater. Lett., 2013, 24: 186–189

    Article  Google Scholar 

  4. Yang M, Hong CK, Hong SH. DMMP Gas Sensing Behavior of ZnO–coated Single–Wall Carbon Nanotube Network Sensors[J]. Mater. Lett., 2012, 24: 312–315

    Article  Google Scholar 

  5. Zare HR, Nasirizadeh N, Ajamain H, et al. Preparation, Electrochemical Behavior and Electrocatalytic Activity of Chlorogenic Acid Multi–Wall Carbon Nanotubes as a Hydroxylamine Sensor[J]. Materials Science & Engineering C., 2011, 5: 975–982

    Article  Google Scholar 

  6. Qiang, Song, Ke zhi, et al. Increasing the Tensile Property of Unidirectional Carbon/Carbon Composites by Grafting Carbon Nanotubes onto Carbon Fibers by Electrophoretic Deposition[J]. J. Mater. Sci. Technol., 2013, 8: 711–714

    Google Scholar 

  7. Liu ZY, Xiao BL, Wang WG, et al. Tensile Strength and Electrical Conductivity of Carbon Nanotube Reinforced Aluminum Matrix Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing[J]. J. Mater. Sci. Technol., 2014, 7: 649–655

    Article  Google Scholar 

  8. Xu Y, Zhang D, Cai J, et al. Effects of Multi–Walled Carbon Nanotubes on the Electromagnetic Absorbing Characteristics of Composites Filled with Carbonyl Iron Particles[J]. J. Mater. Sci. Technol., 2012, 1: 34–40

    Article  Google Scholar 

  9. Wang J, Xie H, Xin Z. Preparation and Thermal Properties of Grafted CNTs Composites[J]. J. Mater. Sci. Technol., 2011, 3: 233–238

    Article  Google Scholar 

  10. Hone J, Batlogg B, Benes Z, et al. Quantized Phonon Spectrum of Single–Wall Carbon Nanotubes[J]. Science, 2000, 5 485: 1 730–1 733

    Article  Google Scholar 

  11. Wang X, Li Q, Jing X, et al. Fabrication of Ultralong and Electrically Uniform Single–Walled Carbon Nanotubes on Clean Substrates.[J]. Nano Lett., 2009, 9: 3 137

    Article  Google Scholar 

  12. Maciej Olek, John Ostrander, Stefan Jurga et al. Layer–by–Layer Assembled Composites from Multiwall Carbon Nanotubes with Different Morphologies[J]. Nano Lett., 2004, 10: 1 889–1 895

    Google Scholar 

  13. Wu J, El Hamaoui B, Li J, et al. Solid–State Synthesis of &Ldquo; Bamboo–Like&Rdquo; and Straight Carbon Nanotubes by Thermolysis of Hexa–Peri–Hexabenzocoronene&Ndash;Cobalt Complexes[ J]. Small, 2005: 210–212

    Google Scholar 

  14. Feng JM, Li YL, Hou F, et al. Controlled Growth of High Quality Bamboo Carbon Nanotube Arrays by the Double Injection Chemical Vapor Deposition Process[J]. Materials Science & Engineering A, 2008, 1: 238–243

    Article  Google Scholar 

  15. Sahoo RK, Daramalla V, Jacob C. Multiwall and Bamboo–Like Carbon Nanotube Growth by CVD Using a Semimetal as a Catalyst[J]. Materials Science & Engineering B, 2012, 1: 79–85

    Article  Google Scholar 

  16. Lin CR, Su CH, Hung CH, et al. Characterization of Bamboo–Like CNTs Prepared Using Sol–Gel Catalyst[J]. Diamond & Related Materials, 2005, 3: 794–797

    Article  Google Scholar 

  17. Jin C, Zou XP, Fei LI, et al. Synthesis of Bamboo–Like Carbon Nanotubes by Ethanol Catalytic Combustion Technique[J]. Nonferr Metal Soc., 2006, s1: s435–437

    Google Scholar 

  18. Shanmugam S, Gedanken A. Electrochemical Properties of Bamboo–Shaped Multiwalled Carbon Nanotubes Generated by Solid State Pyrolysis[J]. Electrochem Commun., 2006, 7: 1 099–1 105

    Article  Google Scholar 

  19. Erkoç Ş. Structural and Electronic Properties of Bamboo–Like Carbon Nanostructure[J]. Physica E: Low–dimensional Systems and Nanostructures, 2006, 1: 62–66

    Article  Google Scholar 

  20. Lee WJ, Ramasamy E, Dong YL, et al. Efficient Dye–Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes[ J]. Acs Appl. Mater. Interfaces, 2009, 6: 1 145–1 149

    Article  Google Scholar 

  21. Li C, Chou TW. A Structural Mechanics Approach for the Analysis of Carbon Nanotubes[J]. International Journal of Solids & Structures, 2003, 10: 2 487–2 499

    Article  Google Scholar 

  22. Cornell WD, Cieplak P, Bayly CI et al. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules[ J]. J. Am. Chem. Soc., 1995, 117: 5 179–5 197

    Article  Google Scholar 

  23. Jang JW, Lee CE, Lee TJ, et al. Lateral Force Microscopy of Bamboo–Shaped Multiwalled Carbon Nanotubes[J]. Curr. Appl. Phys., 2006, 2: 141–144

    Article  Google Scholar 

  24. Glukhova OE, Kolesnikova AS, Torgashov GV, et al. Elastic and Electrostatic Properties of Bamboo–Shaped Carbon Nanotubes[J]. Phys. Solid State, 2010, 6: 1 323–1 328

    Article  Google Scholar 

  25. Wang C, Li Y, Tong L, et al. The Role of Grafting Force and Surface Wettability in Interfacial Enhancement of Carbon Nanotube/Carbon Fiber Hierarchical Composites[J]. Carbon, 2014, 239–246

    Google Scholar 

  26. Yu MF, Lourie O, Dyer MJ, et al. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load[J]. Science, 2000, 5453: 637–640

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lehua Qi  (齐乐华).

Additional information

Funded by the National Natural Science Foundation of China (Nos.51472203, 51221001, U1435202)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Y., Qi, L., Song, Q. et al. Simulation of Tensile Behaviors of Bamboo-like Carbon Nanotubes Based on Molecular Structural Mechanics Approach Combining with Finite Element Analysis. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 11–16 (2019). https://doi.org/10.1007/s11595-019-2007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2007-0

Key words

Navigation