Electrochemical Sensing of Heavy Metal Ions based on Monodisperse Single-crystal Fe3O4 Microspheres

  • Haowei Yan (燕昊伟)
  • Shuangqi Hu (胡双启)
Advanced Materials


Single-crystal Fe3O4 with monodisperse microspheres structure has been used for individual electrochemical detection of heavy metal ions. Morphology and structure of the as-prepared Fe3O4 microspheres were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Meanwhile the electrochemical properties of the Fe3O4 microspheres modified glass carbon electrodes (GCE) were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the enhanced electrochemical response in stripping voltammetry for individual detection of Pb(II), Hg(II), Cu(II), and Cd(II) was evaluated using square wave anodic stripping voltammetry (SWASV). With high specific surface area and excellent catalytic activity toward heavy metal ions, the as-prepared monodisperse and single-crystal Fe3O4 microspheres show a preferable sensing sensitivity (22.2 μA/μM) and limit of detection (0.0699 μM) toward Pb(II). Furthermore, the electrochemical sensor of Fe3O4 microspheres exhibits excellent stability and it also offers potential practical applicability for the determination of heavy metal ions in real water samples. This study provides a potential simple and low cost iron oxide for the construction of sensitive electrochemical sensors applied to monitor and control the pollution of toxic metal ions.

Key words

Fe3O4 microspheres electrochemical detection heavy metal ions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Liu GD, Lin YY, Wu H, et al. Voltammetric Detection of Cr(VI) with Disposable Screen–printed Electrode Modified with Gold Nanoparticles [J]. Environ. Sci. Technol., 2007, 41: 8 129–8 134CrossRefGoogle Scholar
  2. [2]
    Battistel D, Baldi F, Marchetto D, et al. A Rapid Electrochemical Procedure for the Detection of Hg(0) Produced by Mercuric–reductase: Application for Monitoring Hg–resistant Bacteria Activity[J]. Environ. Sci. Technol., 2012, 46: 10 675–10 681CrossRefGoogle Scholar
  3. [3]
    Koehler FM, Rossier M, Waelle M, et al. Magnetic EDTA: Coupling Heavy Metal Chelators to Metal Nanomagnets for Rapid Removal of Cadmium, Lead and Copper from Contaminated Water[J]. Chem. Commun., 2009, 32: 4 862–4 864CrossRefGoogle Scholar
  4. [4]
    Bannon DI, Chisolm JJJr. Anodic Stripping Voltammetry Compared with Graphite Furnace Atomic Absorption Spectrophotometry for Blood Lead Analysis[J]. Clin. Chem., 2001, 47: 1 703–1 704Google Scholar
  5. [5]
    Liu HW, Jiang SJ, Liu SH. Determination of Cadmium, Mercury and Lead in Seawater by Electrothermal Vaporization Isotope Dilution Inductively Coupled Plasma Mass Spectrometry[J]. Spectrochim. Acta B, 1999: 54: 1 367–1 375Google Scholar
  6. [6]
    Eksperiandova LP, Blank AB, Makarovskaya YN. Analysis of Waste Water by X–ray Fluorescence Spectrometry[J]. X–Ray Spectrom., 2002, 31: 259–263CrossRefGoogle Scholar
  7. [7]
    Arai YJ, Lanzirotti A, Sutton S, et al. Arsenic Speciation and Reactivity in Poultry Litter[J]. Environ. Sci. Technol., 2003, 37: 4 083–4 090CrossRefGoogle Scholar
  8. [8]
    Xiao L, Wildgoose GG, Compton RG. Sensitive Electrochemical Detection of Arsenic (III) Using Gold Nanoparticle Modified Carbon Nanotubes Via Anodic Stripping Voltammetry[J]. Anal. Chim. Acta, 2008, 620: 44–49CrossRefGoogle Scholar
  9. [9]
    Xue D, Olga N, Hyde ME, et al. Anodic Stripping Voltammetry of Arsenic(III) Using Gold Nanoparticle–modified Electrodes[J]. Anal Chem., 2004, 76: 5 924–5 929CrossRefGoogle Scholar
  10. [10]
    Yantasee W., Lin YH, Hongsirikarn K, et al. Electrochemical Sensors for the Detection of Lead and Other Toxic Heavy Metals: The Next Generation of Personal Exposure Biomonitors[J]. Environ. Health Persp., 2007, 115: 1 683–1 690CrossRefGoogle Scholar
  11. [11]
    Gemma A, Josefina P, Arben M. Recent Trends in Macro–, Micro–, and Nanomaterial–based Tools and Strategies for Heavy–metal Detection[J]. Chem. Rev., 2011, 111: 3 433–3 458CrossRefGoogle Scholar
  12. [12]
    Staden JFV, Matoetoe MC. Simultaneous Determination of Copper, Lead, Cadmium and Zinc Using Differential Pulse Anodic Stripping Voltammetry in a Flow[J]. Anal. Chim. Acta, 2000, 411: 201–207CrossRefGoogle Scholar
  13. [13]
    Hocevar SB, Ivan S, Bozidar O, et al. Antimony Film Electrode for Electrochemical Stripping Analysis[J]. Anal. Chem., 2007, 79: 8 639–8 643CrossRefGoogle Scholar
  14. [14]
    Chekmeneva E, Diaz–Cruz, JM, Arino, C, et al. Binding of Hg2+ with Phytochelatins: Study by Differential Pulse Voltammetry on Rotating Au–Disk Electrode, Electrospray Ionization Mass–Spectrometry, and Isothermal Titration Calorimetry[J]. Environ. Sci. Technol., 2009, 43: 7 010–7 015CrossRefGoogle Scholar
  15. [15]
    Guo Z, Wei Y, Yang R, et al. Hydroxylation/Carbonylation Carbonaceous Microspheres: A Route Without the Need for an External Functionalization to a “Hunter” of Lead(II) for Electrochemical Detection [J]. Electrochim. Acta., 2013, 87: 46–52CrossRefGoogle Scholar
  16. [16]
    Gadhari NS, Sanghavi BJ, Karna SP, et al. Potentiometric Stripping Analysis of Bismuth Based on Carbon Paste Electrode Modified with Cryptand [2.2.1]_and Multiwalled Carbon Nanotubes[J]. Electrochim. Acta., 2010, 56: 627–635CrossRefGoogle Scholar
  17. [17]
    Xu RX, Yu XY, Gao C, et al. Non–conductive Nanomaterial Enhanced Electrochemical Response in Stripping Voltammetry: The Use of Nanostructured Magnesium Silicate Hollow Spheres for Heavy Metal Ions Detection[J]. Anal. Chim. Acta., 2013, 790: 31–38CrossRefGoogle Scholar
  18. [18]
    Lin M, Cho M, Choe WS, et al. Polypyrrole Nanowire Modified with Gly–Gly–His Tripeptide for Electrochemical Detection of Copper Ion[J]. Biosens. Bioelectron., 2010, 26: 940–945CrossRefGoogle Scholar
  19. [19]
    Xu RX, Yu XY, Gao C, et al. Enhancing Selectivity in Stripping Voltammetry by Different Adsorption Behaviors: the Use of Nanostructured Mg–Al–layered Double Hydroxides to Detect Cd(II)[J]. Analyst., 2013, 138: 1 812–1 818Google Scholar
  20. [20]
    Gao C, Yu XY, Xiong SQ, et al. Electrochemical Detection of Arsenic(III) Completely Free from Noble Metal: Fe3O4 Microspheres–room Temperature Ionic Liquid Composite Showing Better Performance Than Gold[J]. Anal. Chem., 2013, 85: 2 673–2 680CrossRefGoogle Scholar
  21. [21]
    Li RZ, Liu JP, Mechanistic Investigation of the Charge Storage Process of Pseudocapacitive Fe3O4 Nanorod Film[J]. Electrochim. Acta., 2014, 120: 52–56Google Scholar
  22. [22]
    Sun YF, Chen WK, Li WJ, et al. Selective Detection Toward Cd2+ Using Fe3O4/RGO Nanoparticle Modified Glassy Carbon Electrode[J]. J. Electroanal. Chem., 2014, 714: 97–102CrossRefGoogle Scholar
  23. [23]
    Li XY, Si ZJ, Lei YQ, et al. Direct Hydrothermal Synthesis of Single–crystalline Triangular Fe3O4 Nanoprisms[J]. Crystengcomm., 2010, 12: 2 060–2 063CrossRefGoogle Scholar
  24. [24]
    Shi Y, Shi MM, Qiao YQ, et al. Fe3O4 Nanobelts: One–pot and Template–free Synthesis, Magnetic Property, and Application for Lithium Storage[J]. Nanotechnology., 2012, 23Google Scholar
  25. [25]
    Liu J, Liu SQ, Zhuang SX, et al. Synthesis of Carbon–coated Fe3O4 Nanorods as Electrode Material for Supercapacitor[J]. Ionics, 2013, 19: 1 255–1 261Google Scholar
  26. [26]
    Li WJ, Yao XZ, Guo Z, et al. Fe3O4 with Novel Nanoplate–stacked Structure: Surfactant–free Hydrothermal Synthesis and Application in Detection of Heavy Metal Ions[J]. J. Electroanal. Chem., 2015, 749: 75–82CrossRefGoogle Scholar
  27. [27]
    Zhao ZQ, Chen X, Yang Q, et al. Selective Adsorption Toward Toxic Metal Ions Results in Selective Response: Electrochemical Studies on a Polypyrrole/Reduced Graphene Oxide Nanocomposite[J]. Chem. Commun., 2012, 48: 2 180–2 182CrossRefGoogle Scholar
  28. [28]
    Wei Y, Yang R, Zhang YX, et al. High Adsorptive Gamma–AlOOH (boehmite)@SiO2/Fe3O4 Porous Magnetic Microspheres for Detection of Toxic Metal Ions in Drinking Water[J]. Chem. Commun., 2011, 47: 11 062–11 064CrossRefGoogle Scholar
  29. [29]
    Wei Y, Yang R, Yu X.Y, et al. Stripping Voltammetry Study of Ultra–trace Toxic Metal Ions on Highly Selectively Adsorptive Porous Magnesium Oxide Nanoflowers[J]. Analyst., 2012, 137: 2 183–2 191CrossRefGoogle Scholar
  30. [30]
    Wei Y, Liu ZG, Yu XY, et al. O2–plasma Oxidized multi–walled Carbon Nanotubes for Cd(II) and Pb(II) Detection: Evidence of Adsorption Capacity for Electrochemical Sensing[J]. Electrochem. Commun., 2011, 13: 1 506–1 509CrossRefGoogle Scholar
  31. [31]
    Liu YM, Ju XJ, Xin Y, et al. A Novel Smart Microsphere with Magnetic Core and Ion–recognizable Shell for Pb2+ Adsorption and Separation [J]. ACS Appl. Mater. Inter., 2014, 6: 9 530–9 542CrossRefGoogle Scholar
  32. [32]
    Yu XH, Tian XX, Wang SG. Adsorption of Ni, Pd, Pt, Cu, Ag and Au on the Fe3O4(111) Surface[J]. Surf. Sci., 2014, 628: 141–147CrossRefGoogle Scholar
  33. [33]
    Shen YF, Tang J, Nie ZH, et al. Preparation and Application of Magnetic Fe3O4 Nanoparticles for Wastewater Purification[J]. Sep. Purif. Technol., 2009, 68: 312–319CrossRefGoogle Scholar
  34. [34]
    Deng H, Li X, Peng Q, et al. Monodisperse Magnetic Single–crystal Ferrite Microspheres[J]. Angew. Chemie., 2005, 44: 2 782–2 785CrossRefGoogle Scholar
  35. [35]
    Wang XF, You Z, Sha HL, et al. Electrochemical Myoglobin Biosensor Based on Carbon Ionic Liquid Electrode Modified with Fe3O4@SiO2 Microsphere[J]. J. Solid State Electr., 2014, 18: 207–213CrossRefGoogle Scholar
  36. [36]
    Chen PY, Nien PC, Hu CW, et al. Detection of Uric Acid Based on Multi–walled Carbon Nanotubes Polymerized with a Layer of Molecularly Imprinted PMAA[J]. Sensor. Actuat. B–Chem., 2010, 146: 466–471CrossRefGoogle Scholar
  37. [37]
    Wu ZC, Xu CR, Chen HM, et al. Mesoporous MgO Nanosheets: 1,6–hexanediamin–assisted Synthesis and Their Applications on Electrochemical Detection of Toxic Metal Ions[J]. J. Phys. Chem. Solids., 2013, 74: 1 032–1 038CrossRefGoogle Scholar
  38. [38]
    Sun YY, Zhang WH, Yu HL, et al. Controlled Synthesis Various Shapes Fe3O4 Decorated Reduced Graphene Oxide Applied in the Electrochemical Detection[J]. J. Alloy. Compd., 2015, 638: 182–187CrossRefGoogle Scholar
  39. [39]
    Zhang QX, Peng D, Huang XJ, Effect of Morphology of α–MnO2 Nanocrystals on Electrochemical Detection of Toxic Metal Ions[J]. Electrochem. Commun., 2013, 34: 270–273Google Scholar
  40. [40]
    Han XJ, Zhou SF, Fan HL, et al. Mesoporous MnFe2O4 Nanocrystal Clusters for Electrochemistry Detection of Lead by Stripping Voltammetry [J]. J. Electroanal. Chem., 2015, 755: 203–209CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haowei Yan (燕昊伟)
    • 1
  • Shuangqi Hu (胡双启)
    • 1
  1. 1.School of Environment and Safety EngineeringNorth University of ChinaTaiyuanChina

Personalised recommendations