Advertisement

Preparation, Characterization, and Formation Mechanism of Calcium Sulfate Hemihydrate Whiskers

  • Shuzhou Wang (王舒州)
  • Deyu Chen (陈德玉)Email author
  • Keke Zhang
Advanced Materials
  • 4 Downloads

Abstract

Calcium sulfate hemihydrate whiskers were synthesized successfully via one-step hydrothermal crystallization method using phosphogypsum at 130 °C for 240 min with an initial slurry mass fraction of 2.5wt%. The phase compositions, microstructures, thermal properties and molecular structures of asprepared samples were analyzed by XRD, ESEM, EDS, TG-DTA, and FT-IR. The influence of raw materials’ ball-milling time on the morphologies of whiskers was investigated. The effects of impurities on crystallization morphologies and length to diameter ratio (L/D) of calcium sulfate hemihydrate whiskers were studied. The results indicated that the calcium sulfate dihydrate crystalline could be translated directly into fibrous calcium sulfate hemihydrate whiskers. It was beneficial to form fine fiber structure when the ball-milling time of the raw material was 15 min. Aspect ratio of calcium sulfate hemihydrate whiskers decreased with increasing content of impurities. Moreover, the relative growth mechanism of whisker crystals via one-step hydrothermal crystallization method was discussed in detail.

Key words

calcium sulfate whiskers phosphogypsum hydrothermal crystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Canut MMC, Jacomino VMF, Bratveit K, et al. Microstructural Analyses of Phosphogypsum Generated by Brazilian Fertilizer Industries[J]. Mater. Charact., 2008, 59: 365–373CrossRefGoogle Scholar
  2. [2]
    Al–Hwaiti MS, Ranville JF, Ross PE. Bioavailability and Mobility of Trace Metals in Phosphogypsum from Aqaba and Eshidiy[J]. Jordan. Chem. Erde., 2010, 70: 283–291CrossRefGoogle Scholar
  3. [3]
    Bituha T, Vuci Z, Marovic G, et al. A New Approach to Determine the Phosphogypsum Spread from the Deposition Site into the Environment [J]. J. Hazard. Mater., 2013, 261: 584–592CrossRefGoogle Scholar
  4. [4]
    Contreras M, Pérez–López R, Bolívar JP, et al. Fractionation and Fluxes of Metals and Radionuclides During the Recycling Process of Phosphogypsum Wastes Applied to Mineral CO2 Sequestration[J]. Waste Manage., 2015, 45: 412–419CrossRefGoogle Scholar
  5. [5]
    Sahu SK, Ajmal PY, Bhangare RC, et al. Natural Radioactivity Assessment of a Phosphate Fertilizer Plant Area[J]. J. Radiat. Res. Appl. Sci., 2014, 7: 123–128CrossRefGoogle Scholar
  6. [6]
    Bituha T, Vuci Z, Marovic Tayibi H, et al., Environmental Impact and Management of Phosphogypsum[J]. J. Env. Man., 2009, 90: 2 377–2 386CrossRefGoogle Scholar
  7. [7]
    Yang JK, Liu WC, Zhang LL, et al. Preparation of Load–bearing Building Materials from Autoclaved Phosphogypsum[J]. Constr. Build. Mater., 2009, 23(2): 687–693CrossRefGoogle Scholar
  8. [8]
    Kadirova ZC, Hojamberdiev M, Bo L, et al. Ion Uptake Properties of Low–cost Inorganic Sorption Materials in the CaO–Al2O3–SiO2 System Prepared from Phosphogypsum and Kaolin[J]. J. Clean. Prod., 2014, 83: 483–490CrossRefGoogle Scholar
  9. [9]
    El–Afifi EM, Hilal MA, Attallah MF, et al. Characterization of Phosphogypsum Wastes Associated with Phosphoric Acid and Fertilizers Production[J]. J. Environ. Radioactiv., 2009, 100: 407–412CrossRefGoogle Scholar
  10. [10]
    He H, Dong FQ, He P, et al. Effect of Glycerol on the Preparation of Phosphogypsum–based CaSO4·0.5H2O Whiskers[J]. J. Mater. Sci., 2014, 49: 1 957–1 963CrossRefGoogle Scholar
  11. [11]
    Zhu ZC, Xu L, Chen G, et al. Optimization on Tribological Properties of Aramid Fibre and CaSO4 Whisker Reinfored Non–metallic Friction Material with Analytic Hierarchy Process and Preference Ranking Organization Method for Enrichment Evaluations[J]. Mater. Des., 2010, 31: 551–555CrossRefGoogle Scholar
  12. [12]
    Mwaba MG, Gu JJ, Golriz MR. Effect of Magnetic Field on Calcium Sulfate Crystal Morphology[J]. J. Cryst. Growth, 2007, 303: 381–386CrossRefGoogle Scholar
  13. [13]
    Xu A, Li H, Luo K, et al. Formation of Calcium Sulfate Whiskers from CaCO3–bearing Desulfurization Gypsum[J]. Res. Chem. Intermed., 2011, 37: 449–455CrossRefGoogle Scholar
  14. [14]
    Zhu ZC, Xu L, Chen G, et al. Effect of Different Whiskers on the Physical and Tribological Properties of Non–metallic Friction Materials [J]. Mater. Des., 2011, 32: 54–61CrossRefGoogle Scholar
  15. [15]
    Zhu XF, Wang YB, Wang X, et al. Integration of Preparation and Stabilization for Hemihydrate Calcium Sulfate Whiskers[J]. Adv. Mater. Res., 2011, 239–242: 3 047–3 077Google Scholar
  16. [16]
    Hamdona SK, Al–Hadad UA. Crystallization of Calcicalcium Sulfate Dihydrate in the Presence of Some Metal Ions[J]. J. Cryst. Growth, 2007, 299: 146–151CrossRefGoogle Scholar
  17. [17]
    Liu J, Reni L, Wei Q, et al. Fabrication and Characterization of Polycaprolactone/Calcium Sulfate Whisker Composites[J]. Express Polym. Lett., 2011, 5: 742–752CrossRefGoogle Scholar
  18. [18]
    Capadona JR, Shanmuganathan K, Trittschuh S, et al. Polymer Nanocomposites with Nanowhiskers Isolated from Microcrystalline Cellulose [J]. Biomacromolecules, 2009, 10: 712–716CrossRefGoogle Scholar
  19. [19]
    Zhao W, Wu Y, Xu J, et al. Effect of Ethylene Glycol on Hydrothermal Formation of Calcium Sulfate Hemihydrate Whiskers with High Aspect Ratios[J]. RSC. Adv., 2015, 5: 50 544–50 548CrossRefGoogle Scholar
  20. [20]
    Wang YQ, Li YC, Yuan A, et al. Preparation of Calcium Sulfate Whiskers by Carbide Slag through Hydrothermal Method[J]. Cryst. Res. Technol., 2014, 49: 800–807CrossRefGoogle Scholar
  21. [21]
    Wang X, Jin B, Yang LS, et al. Effct of CuCl2 on Hydrothermal Crystallization of Calcium Sulfate Whiskers Prepared from FGD Gypsum [J]. Cryst. Res. Technol., 2015, 50: 633–640CrossRefGoogle Scholar
  22. [22]
    Luo KB, Xiang CM, Li HP, et al. Influence of Temperature and Solution Composition on the Formation of Calcium Sulfates[J]. Particuology, 2010, 8: 240–244CrossRefGoogle Scholar
  23. [23]
    Anto PL, Anto RJ, Varhhese HT, et al. FT–Raman and SERS Spectra of Anilinium Sulfate[J]. Ramac. Spectrosc., 2009, 40: 1 810–1 815CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shuzhou Wang (王舒州)
    • 1
  • Deyu Chen (陈德玉)
    • 1
    Email author
  • Keke Zhang
    • 2
  1. 1.School of Materials Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
  2. 2.Institute of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations