Magnetically Recoverable PEI/Titanate@Fe3O4 Photocatalysts: Fabrication and Photocatalytic Properties

  • Dongya Sun (孙东亚)Email author
  • Liwen He
  • Jiqiong Lian
  • An Xie
  • Bizhou Lin
Advanced Materials


The magnetically separable ternary polyetherimide/titanate@Fe3O4 (PTF) photocatalysts of special heterostructure between magnetite (Fe3O4) microspheres and titanates nanosheets modified by polyetherimide (PEI) were successfully fabricated via a simple facile hydrothermal deposition method. The as-prepared photocatalysts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Transmission electron microscopy and UV-vis diffuse reflectance spectroscopy etc. The results showed that the as-fabricated material had a structure of Fe3O4 microspheres coated with titanates nanosheets modified by PEI. The special interfacial contact between 3D microsphere and 2D nanosheets in the nanoarchitectures was formed via electrostatic attraction. Furthermore, the resulted photocatalysts were tested by degradation reaction of methylene blue under visible light irradiation and demonstrated an enhanced performance than the pure Fe3O4 microspheres, and the photocatalytic activity enhanced with the molar ratio of Fe3O4 microspheres and modified titanate gradually, which was attributed to the expansion of the surface area and the different electrostatic contact between the Fe3O4 microspheres and titanate nanosheets. Moreover, the obtained results revealed the high yield magnetic separation and efficient reusability of PTF-5 (96.7%) over 3 times reuse.

Key words

Fe3O4 microspheres titanate recyclability polyetherimide photocatalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Han W, Chen Z, Huang Z, et al. Enhanced Photocatalytic Activities of Three–Dimensional Graphene–Based Aerogel Embedding TiO2, Nanoparticles and Loading MoS2, Nanosheets as Co–catalyst[J]. International Journal of Hydrogen Energy, 2014, 39(34): 19 502–19 512CrossRefGoogle Scholar
  2. [2]
    Hamzezadeh–Nakhjavani S, Tavakoli O, Akhlaghi SP, et al. Efficient Photocatalytic Degradation of Organic Pollutants by Magnetically Recoverable Nitrogen–doped TiO2, Nanocomposite Photocatalysts Under Visible Light Irradiation[J]. Environmental Science & Pollution Research, 2015, 22(23): 18 859–18 873CrossRefGoogle Scholar
  3. [3]
    Dietz ME. Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions[J]. Water Air & Soil Pollution, 2016, 22(1): 351–363Google Scholar
  4. [4]
    Chen D, Zou L, Li S, Zheng F, Nanospherical Like Reduced Graphene Oxide Decorated TiO2 Nanoparticles: An Advanced Catalyst for the Hydrogen Evolution Reaction[J]. Scientific Reports, 2016, 6: 20 335–20 342CrossRefGoogle Scholar
  5. [5]
    Lang J, Wang J, Zhang Q, et al. Chemical Precipitation Synthesis and Significant Enhancement in Photocatalytic Activity of Ce–doped ZnO Nanoparticles[J]. Ceramics International, 2016, 42(12): 14 175–14 181CrossRefGoogle Scholar
  6. [6]
    Li Q, Guo B, Yu J, et al. Highly Efficient Visible–Light–Driven Photocatalytic Hydrogen Production of CdS Cluster Decorated Graphene Nanosheets[J]. Journal of the American Chemical Society, 2011, 133(28): 10 878–10 884CrossRefGoogle Scholar
  7. [7]
    Huang ST, Lee WW, Chang JL, et al. Hydrothermal Synthesis of SrTiO3, Nanocubes: Characterization, Photocatalytic Activities, and Degradation Pathway[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1 927–1 936CrossRefGoogle Scholar
  8. [8]
    Hosogi Y, Kato H, Kudo A. Photocatalytic Activities of Layered Titanates and Niobates Ion–Exchanged with Sn2+ under Visible Light Irradiation [J]. Journal of Physical Chemistry C, 2008, 112(45): 17 678–17 682CrossRefGoogle Scholar
  9. [9]
    Machida M, Miyazaki K, Matsushima S, et al. Photocatalytic Properties of Layered Perovskite Tantalates, MLnTa2O7 (M = Cs, Rb, Na, and H; Ln = La, Pr, Nd, and Sm)[J]. Journal of Materials Chemistry, 2003, 13(6): 1 433–1 437CrossRefGoogle Scholar
  10. [10]
    Fan Z, Bozhilov K, Dillon RJ, et al. Active Facets on Titanium( III)–Doped TiO2: An Effective Strategy to Improve the Visible–Light Photocatalytic Activit[J]. Angewandte Chemie, 2012, 51(25): 6 327–6 330Google Scholar
  11. [11]
    Dolat D, Mozia S, Wróbel RJ, et al. Nitrogen–doped, Metal–modified Rutile Titanium Dioxide as Photocatalysts for Water Remediation[J]. Applied Catalysis B: Environmental, 2015, 162: 310–318CrossRefGoogle Scholar
  12. [12]
    Xuan P, Yong Z, Shu L, et al. Comparing Graphene–TiO2 Nanowire and Graphene–TiO2 Nanoparticle Composite Photocatalysts[J]. Acs Applied Materials & Interfaces, 2012, 4(8): 3 944–3 950CrossRefGoogle Scholar
  13. [13]
    Sarkar D, Ghosh CK, Mukherjee S, et al. Three Dimensional Ag2O/TiO2 Type–II (p–n) Nanoheterojunctions for Superior Photocatalytic Activity[J]. Acs Applied Materials & Interfaces, 2013, 5(2): 331–337CrossRefGoogle Scholar
  14. [14]
    Xin T, Ma M, Zhang H, et al. A Facile Approach for the Synthesis of Magnetic Separable Fe3O4@TiO2, Core–Shell Nanocomposites as Highly Recyclable Photocatalysts[J]. Applied Surface Science, 2014, 288(1): 51–59CrossRefGoogle Scholar
  15. [15]
    Mandel K, Hutter F, Gellermann C, et al. Reusable Superparamagnetic Nanocomposite Particles for Magnetic Separation of Iron Hydroxide Precipitates to Remove and Recover Heavy Metal Ions from Aqueous Solutions[J]. Separation & Purification Technology, 2013, 109(19): 144–147CrossRefGoogle Scholar
  16. [16]
    Jing J, Jing L, Jie F, et al. Photodegradation of Quinoline in Water Over Magnetically Separable Fe3O4@TiO2, Composite Photocatalysts[J]. Chemical Engineering Journal, 2013, 219(3): 355–360CrossRefGoogle Scholar
  17. [17]
    Peng L, You M, Wu C, et al. Reversible Phase Transfer of Nanoparticles based on Photoswitchable Host–Guest Chemistry[J]. ACS Nano, 2014, 8(3): 2 555–2 561CrossRefGoogle Scholar
  18. [18]
    Xu L, Wang J. Magnetic Nanoscaled Fe3O4/CeO2 Composite as an Efficient Fenton–like Heterogeneous Catalyst for Degradation of 4–chlorophenol [J]. Environmental Science & Technology, 2017, 46(18): 10 145–10 153CrossRefGoogle Scholar
  19. [19]
    Li WP, Liao PY, Su CH, et al. Formation of Oligonucleotide–Gated Silica Shell–Coated Fe3O4–Au Core–Shell Nanotrisoctahedra for Magnetically Targeted and Near–Infrared Light–Responsive Theranostic Platform[J]. Journal of the American Chemical Society, 2014, 136(28): 10 062–10 075CrossRefGoogle Scholar
  20. [20]
    Zhang JZ, Schwartzberg AM, Norman T, et al. Comment on Gold Nanoshells Improve Single Nanoparticle Molecular Sensors[J]. Nano Letters, 2005, 5(4): 809–810CrossRefGoogle Scholar
  21. [21]
    Wang ZL, Song J. Piezoelectric Nanogenerators based on Zinc Oxide Nanowire Arrays[J]. Science, 2006, 312(5771): 242–246CrossRefGoogle Scholar
  22. [22]
    Jung KY, Park SB. Enhanced Photoactivity of Silica–Embedded Titania Particles Prepared by Sol–gel Process for the Decomposition of Trichloroethylene [J]. Applied Catalysis B: Environmental, 2000, 25(4): 249–256CrossRefGoogle Scholar
  23. [23]
    Kalantari M, Kazemeini M, Arpanaei A. Facile Fabrication and Characterization of Amino–Functionalized Fe3O4, Cluster@SiO2, Core/Shell Nanocomposite Spheres[J]. Materials Research Bulletin, 2013, 48(6): 2 023–2 028CrossRefGoogle Scholar
  24. [24]
    Wang L, Wei H, Fan Y, et al. One–Dimensional CdS/α–Fe2O3 and CdS/Fe3O4 Heterostructures: Epitaxial and Nonepitaxial Growth and Photocatalytic Activity[J]. Journal of Physical Chemistry C, 2009, 113(32): 14 119–14 125CrossRefGoogle Scholar
  25. [25]
    Sun M, Fang Y, Wang Y, et al. Synthesis of Cu2O/Graphene/Rutile TiO2, Nanorod Ternary Composites with Enhanced Photocatalytic Activity [J]. Journal of Alloys & Compounds, 2015, 650: 520–527CrossRefGoogle Scholar
  26. [26]
    Nel AE, Mädler L, Velegol D, et al. Understanding Bio–physicochemical Interactions at the Nano–bio Interface[J]. Nature Materials, 2009, 8(7): 543–557CrossRefGoogle Scholar
  27. [27]
    Sasaki T, Watanabe M, Hashizume H, et al. Macromolecule–like Aspects for a Colloidal Suspension of an Exfoliated Titanate. Pairwise Association of Nanosheets and Dynamic Reassembling Process Initiated from It[J]. Journal of the American Chemical Society, 1996, 118(35): 8 329–8 335Google Scholar
  28. [28]
    Márquezherrera A, Ovandomedina V, Castilloreyes B, et al. Facile Synthesis of SrCO3–Sr(OH)2/PPy Nanocomposite with Enhanced Photocatalytic Activity under Visible Light[J]. Materials, 2016, 9(1): 30–43CrossRefGoogle Scholar
  29. [29]
    Xu BH, Lin BZ, Sun DY, et al. Preparation and Electrical Conductivity of Polyethers/WS2 Layered Nanocomposites[J]. Electrochimica Acta, 2007, 52(9): 3 028–3 034CrossRefGoogle Scholar
  30. [30]
    Xu BH, Lin BZ, Chen ZJ, et al. Preparation and Electrical Conductivity of Polypyrrole/WS2 Layered Nanocomposites[J]. Journal of Colloid & Interface Science, 2009, 330(1): 220–226CrossRefGoogle Scholar
  31. [31]
    Allen T. Particle Size Measurement Volume 1 Powder Sampling and Particle Size Measurement[M]. 5th ed, 1997Google Scholar
  32. [32]
    Lin BZ, Xu BH, He LW, et al. Mesoporous Cobalt–Intercalated Layered Tantalotungstate with High Visible–light Photocatalytic Activity [J]. Microporous & Mesoporous Materials, 2013, 172(2): 105–111CrossRefGoogle Scholar
  33. [33]
    Chen ZJ, Lin BZ, Xu BH, et al. Preparation and Characterization of Mesoporous TiO2–Pillared Titanate Photocatalyst[J]. Journal of Porous Materials, 2011, 18(2): 185–193CrossRefGoogle Scholar
  34. [34]
    Fang J, Zheng Z, Xu Z, et al. Preparation and Characterization of SiO2–Pillared H2Ti4O9, and Its Photocatalytic Activity for Methylene Blue Degradation[J]. Journal of Hazardous Materials, 2008, 164(2–3): 1 250–1 256Google Scholar
  35. [35]
    He LW, Sun DY, Lin BZ. Preparation, Characterization and Photocatalytic Activity of Mesoporous Zr–Pillared Titanate[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(11): 2 489–2 497Google Scholar
  36. [36]
    Lu H, Wang S, Zhao L, et al. Hierarchical ZnO Microarchitectures Sssembled by Ultrathin Nanosheets: Hydrothermal Synthesis and Enhanced Photocatalytic Activity[J]. Journal of Materials Chemistry, 2011, 21(12): 4 228–4 234CrossRefGoogle Scholar
  37. [37]
    Ismail AA, Bahnemann DW. Mesoporous Titania Photocatalysts: Preparation, Characterization and Reaction MMechanisms[J]. Journal of Materials Chemistry, 2011, 21(32): 11 686–11 707CrossRefGoogle Scholar
  38. [38]
    Brus L. Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory[J]. Journal of Physical Chemistry, 1986, 90(12): 2 555–2 560CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dongya Sun (孙东亚)
    • 1
    • 2
    Email author
  • Liwen He
    • 1
    • 2
  • Jiqiong Lian
    • 1
  • An Xie
    • 1
  • Bizhou Lin
    • 2
  1. 1.Key Laboratory of Functional Materials and Applications of Fujian Province, College of Materials Science and EngineeringXiamen University of TechnologyXiamenChina
  2. 2.Fujian Key Laboratory of Photoelectric Functional MaterialsHuaqiao UniversityXiamenChina

Personalised recommendations