Advertisement

Nanomechanical Property Measurements of SrTiO3 Submicron-fiber

  • Qingfeng Zhu (朱庆丰)
  • Yuxia Gao (高玉霞)
  • Yang Yang
  • Yongli Huang
  • Xiaolan Tan
  • Feng An
  • Kai Pan (潘锴)Email author
  • Shuhong Xie (谢淑红)Email author
Advanced Materials
  • 11 Downloads

Abstract

Strontium titanate (SrTiO3) submicron-fibers with perovskite structure were successfully synthesized by electrospinning method. The nanomechanical properties of synthesized SrTiO3 were investigated by the novel amplitude modulation-frequency modulation (AM-FM) method based on atomic force microscope and nanoindentation technique. The results of AM-FM show that the resonant frequency of SrTiO3 submicron-fiber is lower than that of the Si substrate, which indicates that the Young’s modulus of SrTiO3 submicron-fiber is smaller than that of Si substrate in the range of 105–125 GPa. Nanoindentation further confirmed the results, showing a value of 104 ± 17 GPa. The atomic force microscope-based AM-FM provides us a new way to study the mechanical performance of low dimensional materials.

Key words

submicron-fiber electrospinning amplitude modulation-frequency modulation nanoindentation Young’s modulus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BAI HW, LIU ZY, SUN DD. Facile Fabrication of TiO2/SrTiO3 Composite Nanofibers by Electrospinning for High Efficient H2 Generation [J]. J. Am. Ceram. Soc., 2013, 96(3): 942–949CrossRefGoogle Scholar
  2. [2]
    YANG GR, YAN W, WANG JN, et al. Fabrication and Photocatalytic Activities of SrTiO3 Nanofibers by Sol–gel Assisted Electrospinning[J]. J. Sol–Gel Sci. Technol., 2014, 71(1): 159–167CrossRefGoogle Scholar
  3. [3]
    Macaraog L, Chuangchote S, Sagawa T. Electrospun SrTiO3 Nanofibers for Photocatalytic Hydrogen Generation[J]. J. Mater. Res., 2013, 29(1): 123–130CrossRefGoogle Scholar
  4. [4]
    BEATTIE AG, SAMARA GA. Pressure Dependence of the Elastic Constants of SrTiO3[J]. J. Appl. Phys., 1971, 42(6): 2 376–2 381CrossRefGoogle Scholar
  5. [5]
    Fischer GJ, WANG Z, Karato SI. Elasticity of CaTiO3, SrTiO3 and Ba–TiO3 Perovskites up to 3.0 GPa: The Effect of Crystallographic Structure [J]. Phys. Chem. Miner., 1993, 20(2): 97–103CrossRefGoogle Scholar
  6. [6]
    Thomas D, Janardhanan C, Sebastian MT. Mechanically Flexible Butyl Rubber–SrTiO3 Composite Dielectrics for Microwave Applications[J]. Int. J. Appl. Ceram. Technol., 2011, 8(5): 1 099–1 107CrossRefGoogle Scholar
  7. [7]
    NISA VS, RAJESH S, MURALI KP, et al. Preparation, Characterization and Dielectric Properties of Temperature Stable SrTiO3/PEEK Composites for Microwave Substrate Applications[J]. Compos. Sci. Technol., 2008, 68(1): 106–112CrossRefGoogle Scholar
  8. [8]
    WANG JS, YIN S, KOMATSU M, et al. Photo–oxidation Properties of Nitrogen Doped SrTiO3 Made by Mechanical Activation[J]. Appl. Catal. B–Environ., 2004, 52(1): 11–21CrossRefGoogle Scholar
  9. [9]
    YUAN XL, ZHENG MJ, ZHANG YF, et al. Self–assembly of Three–dimensional SrTiO3 Microscale Superstructures and Their Photonic Effect[J]. Inorg. Chem., 2013, 52(5): 2 581–2 587CrossRefGoogle Scholar
  10. [10]
    PEIGNEY A, LAURENT C, FLAHAUT E, et al. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes[J]. Carbon, 2001, 39(4): 507–514CrossRefGoogle Scholar
  11. [11]
    SEHAQUI H, ZHOU Q, BERGLUND LA. High–porosity Aerogels of High Specific Surface Area Prepared from Nanofibrillated Cellulose (NFC)[J]. Compos. Sci. Technol., 2011, 71(13): 1 593–1 599CrossRefGoogle Scholar
  12. [12]
    PODGORSKI A, BALAZY A, GRADON L. Application of Nanofibers to Improve the Filtration Efficiency of the Most Penetrating Aerosol Particles in Fibrous Filters[J]. Chem. Eng. Sci., 2006, 61(20): 6 804–6 815CrossRefGoogle Scholar
  13. [13]
    YANG DZ, LI Y N, NIE J. Preparation of Gelatin/PVA Nanofibers and Their Potential Application in Controlled Release of Drugs[J]. Carbohydr. Polym., 2007, 69(3): 538–543CrossRefGoogle Scholar
  14. [14]
    WANG L, YU Y, CHEN PC, et al. Electrospinning Synthesis of C/Fe3O4 Composite Nanofibers and Their Application for High Performance Lithium–ion Batteries[J]. J. Power Sources, 2008, 183(2): 717–723CrossRefGoogle Scholar
  15. [15]
    WANG G, JI Y, HUANG X, et al. Fabrication and Characterization of Polycrystalline WO3 Nanofibers and Their Application for Ammonia Sensing[J]. J. Phys. Chem. B, 2006, 110(47): 23 777–23 782CrossRefGoogle Scholar
  16. [16]
    SCHRANZ W, SONDERGELD P, KITYK AV, et al. Elastic Properties of SrTiO3 Crystals at Ultralow Frequencies[J]. Phase Transitions, 1999, 69(1): 61–76CrossRefGoogle Scholar
  17. [17]
    SCOTT JF, LEDBETTER H. Interpretation of Elastic Anomalies in SrTiO3 at 37K[J]. Z. Phys. B: Condens. Matter, 1997, 104(4): 635–639CrossRefGoogle Scholar
  18. [18]
    DEMCZYK BG, WANG YM, CUMINGS J, et al. Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multi–Walled Carbon Nanotubes[J]. Microsc. Microanal., 2002, 334(1/2): 173–178Google Scholar
  19. [19]
    LEE SH, TEKMEN C, SIGMUND WM. Three–point Bending of Electrospun TiO2 Nanofibers[J]. Mater. Sci. Eng. A, 2005, 398(1/2): 77–81CrossRefGoogle Scholar
  20. [20]
    LI XD, GAO HS, MURPHY CJ, et al. Nanoindentation of Silver Nanowires[J]. Nano Lett., 2003, 3(11): 1 495–1 498CrossRefGoogle Scholar
  21. [21]
    GARCIA R, PROKSCH R, GARCIA R. Nanomechanical Mapping of Soft Matter by Bimodal Force Microscopy[J]. Eur. Polym. J., 2013, 49(8): 1 897–1 906CrossRefGoogle Scholar
  22. [22]
    OLIVER WC, PHARR GM. An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments[J]. J. Mater. Res., 1992, 7(6): 1 564–1 583CrossRefGoogle Scholar
  23. [23]
    HOPCROFT MA, MEMBER, IEEE, et al. What is the Young’s Modulus of Silicon?[J]. J. Microelectromech. S., 2010, 19(2): 229–238CrossRefGoogle Scholar
  24. [24]
    YABLON DG, GANNEPALLI A, PROKSCH R, et al. Quantitative Viscoelastic Mapping of Polyolefin Blends with Contact Resonance Atomic Force Microscopy[J]. Macromolecules, 2012, 45(10): 4 363–4 370CrossRefGoogle Scholar
  25. [25]
    BHUSHAN B, LI X. Nanomechanical Characterisation of Solid Surfaces and Thin Films[J]. Int. Mater. Rev., 2003, 48(3): 125–164CrossRefGoogle Scholar
  26. [26]
    LI XD, GAO HS, MURPHY CJ, et al. Nanoindentation of Cu2O Nanocubes [J]. Nano Lett., 2004, 4(10): 1 903–1 907CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qingfeng Zhu (朱庆丰)
    • 1
  • Yuxia Gao (高玉霞)
    • 2
  • Yang Yang
    • 3
  • Yongli Huang
    • 1
  • Xiaolan Tan
    • 4
  • Feng An
    • 1
  • Kai Pan (潘锴)
    • 2
    Email author
  • Shuhong Xie (谢淑红)
    • 2
    Email author
  1. 1.Hunan Provincial Key Laboratory of Thin Film Materials and DevicesXiangtan UniversityXiangtanChina
  2. 2.Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and EngineeringXiangtan UniversityXiangtanChina
  3. 3.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA
  4. 4.College of Mechanical and Electrical EngineeringNorth China University of TechnolotyBeijingChina

Personalised recommendations