Physical and Mechanical Properties of PP Composites based on Different Types of Lignocellulosic Fillers

  • Selcuk Erdogan
  • Umit HunerEmail author
Advanced Materials


The presents preparation and characterization of different types of lignocellulosic fillers (pine wood sawdust/ walnut shell flour/ black rice husk powder) reinforced polypropylene composites were presented. The effect of MAPP as coupling agent (4wt%) on the physical and mechanical properties was also investigated. Polypropylene composites were prepared at different rates of filler/matrix (wt%) by using extrusion (for melt blending) and hot compression molding process. Maximum values of tensile and flexural strength were obtained as 26.1 and 43.4 MPa, respectively, whereas the elongation at break value was 4.11% at 10% pine wood sawdust reinforced PP. Tensile and flexural modulus of composites reached the maximum values as 3855 and 3633 MPa with the composite of 30% walnut shell flour reinforced PP. Characterization of composites was carried out by using tensile test, flexural test, FT-IR, and SEM.

Key words

natural filler water absorption FTIR polypropylene MAPP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Belmares H, Barrera A, Castillo E. New Composite Materials from Natural Hard Fibres[J]. Ind. Eng. Chem. Prod. RD., 1981, 20: 555–561CrossRefGoogle Scholar
  2. [2]
    Joseph PV, Joseph K, Thomas S. Effect of Processing Variables on the Mechanical Properties of Sisal Fibre Reinforced Polypropylene Composites [J]. Compos. Sci. Technol., 1999, 59: 1625–1640CrossRefGoogle Scholar
  3. [3]
    Bettini SHP, Uliana AT, Holzschuh D. Effect of Process Parameters and Composition on Mechanical, Thermal, and Morphological Properties of Polypropylene/Sawdust Composites[J]. J. Appl. Polym. Sci., 2008, 108: 2 233–2 241CrossRefGoogle Scholar
  4. [4]
    Stark NM, Rowlands RE. Effects of Wood Fiber Characteristics On Mechanical Properties of Wood/Polypropylene Composites[J]. Wood Fiber Sci., 2003, 35: 167–174Google Scholar
  5. [5]
    Ayrilmis N, Kaymakci A, Ozdemir F. Physical, Mechanical, and Thermal Properties of Polypropylene Composites Filled with Walnut Shell Flour[J]. J. Ind. Eng. Chem., 2013, 19: 908–914CrossRefGoogle Scholar
  6. [6]
    Langroudi AE, Dogouri FJ, Nouri MR, et al. Mechanical and Thermal Properties of Polypropylene/Recycled Polyethylene Terephthalate/Chopped Rice Husk Composites[J]. J. Appl. Polym. Sci., 2008, 110: 1 979–1 985CrossRefGoogle Scholar
  7. [7]
    Nouri MR, Dogouri FJ, Oromiehie A, et al. Mechanical Properties and Water Absorption Behavior of Chopped Rice Husk Filled Polypropylene Composites[J]. Iran. Polym. J., 2006, 15: 757–766Google Scholar
  8. [8]
    Zahedi M, Pirayesh H, Khanjanzadeh H, et al. Organo–modified Montmorillonite Reinforced Walnut Shell/Polypropylene Composites[J]. Mater. Des., 2013, 51: 803–809CrossRefGoogle Scholar
  9. [9]
    Herrera–Franco PJ, Valadez–Gonzalez A. Mechanical Properties of Continuous Natural Fiber–Reinforced Polymer Composites[J]. Compos. A, 2008, 35: 339–345CrossRefGoogle Scholar
  10. [10]
    Turmanova S, Dimitrova A, Vlaev L. Comparison of Water Absorption and Mechanical Behaviors of Polypropylene Composites Filled With Rice Husk Ash[J]. Polym.–Plast. Technol., 2008, 47: 809–818CrossRefGoogle Scholar
  11. [11]
    Zabihzadeh SM. Water Uptake and Flexural Properties of Natural Filler/Hdpe Composites[J]. Bioresources, 2010, 5: 316–323Google Scholar
  12. [12]
    Mohd Ishak ZA, Yow BN, Ng BL, et al. Hygrothermal Aging and Tensile Behavior of Injection Molded Rice Husk–Filled Polypropylene Composites[J]. J. Appl. Polym. Sci., 2001, 81: 742–753CrossRefGoogle Scholar
  13. [13]
    Rozman HD, Wan Daud WR. In Handbook of Polymer Alloys Blends[M]. Shonaike GO, Simon G, Eds. Marcel Dekker: 1999, New YorkGoogle Scholar
  14. [14]
    Espert A, Vilaplana F, Karlsson S. Comparison of Water Absorption in Natural Cellulosic Fibres from Wood and One–year Crops in Polypropylene Composites and Its Influence on Their Mechanical Properties [J]. Compos. A, 2004, 35: 1 267–1 276CrossRefGoogle Scholar
  15. [15]
    San HP, Nee LA, Meng HC. Physical and Bending Properties of Injection Molded Wood Plastic Composite Boards[J]. J. Eng. Appl. Sci., 2008, 3: 13–19Google Scholar
  16. [16]
    Caraschi JC, Leão AL. Wood flour as Reinforcement of Polypropylene [J]. Mater. Res., 2002, 5: 405–409CrossRefGoogle Scholar
  17. [17]
    Wambua P, Ivens J, Verpoest I. Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics[J]. Compos. Sci. Technol., 2003 63: 1 259–1 264Google Scholar
  18. [18]
    Santos EF, Mauler RS, Nachtigall SMB. Effectiveness of Maleatedand Silanized–PP for Coir Fiber–Filled Composites[J]. J. Reinf. Plast. Compos., 2009, 28: 2 119–2 129CrossRefGoogle Scholar
  19. [19]
    Lee BH, Kim HJ, Yu WR. Fabrication of Long and Discontinuous Natural Fibre Reinforced Polypropylene Biocomposites and Their Mechanical Properties[J]. Fiber. Polym., 2009, 10: 83–90CrossRefGoogle Scholar
  20. [20]
    Malkapuram R, Kumar V, Yuvraj SN. Recent Development in Natural Fibre Reinforced Polypropylene Composites[J]. J. Reinf. Plast. Compos., 2008, 28: 1 169–1 189CrossRefGoogle Scholar
  21. [21]
    Ichazo MN, Albano C, Gonzalez J, et al. Polypropylene/Wood Flour Composites: Treatments and Properties[J]. Compos. Struct., 2001, 54: 207–214CrossRefGoogle Scholar
  22. [22]
    Stark NM, Matuana LM. Characterization of Weathered Wood–plastic Composite Surfaces Using FTIR Spectroscopy, Contact Angle, and XPS[J]. Polym Degrad Stabil., 2007, 92: 1 883–1 890CrossRefGoogle Scholar
  23. [23]
    Danyadi L, Janecska T, Szabo Z, et al. Wood Flour Filled PP Composites: Compatibilization and Adhesion[J]. Compos. Sci. Technol., 2007, 67: 2 838–2 846CrossRefGoogle Scholar
  24. [24]
    Faix O, Bottcher JH. The Influence of Particle Size and Concentration in Transmission and Diffuse Reflectance Spectroscopy of Wood[J]. Holz Roh Werkst., 1992, 50: 221–226CrossRefGoogle Scholar
  25. [25]
    Mohanty A, Misra M, Drzal LT. Natural Fibers[M]. CRS Press/Taylor and Francis Group LLC, Boca Raton, 2005Google Scholar
  26. [26]
    Maldas D, Kokta BV. Interfacial Adhesion of Lignocellulosic Materials in Polymer Composites: An Overview[J]. Compos. Interface, 1993, 1: 87–108CrossRefGoogle Scholar
  27. [27]
    Popescu MC, Popescu CM, Lisa G, et al. Evaluation of Morphological and Chemical Aspects of Different Wood Species by Spectroscopy and Thermal Methods[J]. J. Mol. Struct., 2011 98: 65–72Google Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Trakya University, Faculty of Engineering, Department of Mechanical EngineeringEdirneTurkey

Personalised recommendations