Advertisement

Synthesis and DNA Adsorption of Poly(2-Vinyl-4,6-Diamino-1,3,5-Triazine) Coated Polystyrene Microspheres

  • Lei Huang (黄雷)
  • Xiaotao Wang (王小涛)
  • Xun Xie
  • Weihong Xie
  • Xuefeng Li
  • Xinghou Gong
  • Shijun Long
  • Huiling Guo
  • Zuifang Liu (刘最芳)
Biomaterials
  • 10 Downloads

Abstract

To take advantage of the polymer’s special properties, we synthesized PVDAT coated polystyrene (PVDAT@PS) microspheres through semi-continuous precipitation polymerization, and demonstrated the possibility of controlling the size of microspheres by using different sized PS cores. Mechanism of the microsphere synthesis was investigated. Preliminary application studies indicated that the synthesized microspheres adsorbed double-stranded DNAs (dsDNAs) comprising A-T base pairs in pH7.4 phosphate buffered saline, and the adsorption capacity was in a range of 3.28mg to 5.58mg per gram PVDAT@ PS microspheres depending on A-T base pair percentage and chain length of the dsDNAs.

Key words

2-vinyl-4,6-diamino-1,3,5-triazine PVDAT@PS DNA adsorption semi-continuous precipitation polymerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cao ZQ, Liu WG, Liang DC, et al. Design of Poly(vinyldiaminotriazine)-based Nonviral Vectors Via Specific Hydrogen Bonding with Nucleic Acid Base Pairs[J]. Adv. Funct. Mater., 2007, 17: 246–252CrossRefGoogle Scholar
  2. [2]
    Ye GX, Gao ZQ, Lin L, et al. Study on Cellular Internalization of Poly(vinyldiaminotriazine)-based Hydrogen Bonding Type Non-viral Transgene Vector[J]. Chinese. Sci. Bull., 2008, 53: 2307–2314Google Scholar
  3. [3]
    Gao YX, Ji XM, Yin YH, et al. Poly(N-isopropylacrylamide), Poly(-methacrylic acid) and Their Copolymers for Oral Colon-specific Drug Delivery[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2009, 4: 571–574CrossRefGoogle Scholar
  4. [4]
    Asanuma H, Ban T, Gotoh S, et al. Hydrogen Bonding in Water by Poly(vinyldiaminotriazine) for The Molecular Recognition of Nucleic Acid Bases and Their Derivatives[J]. Macromolecules, 1998, 31: 371–377CrossRefGoogle Scholar
  5. [5]
    Asanuma H, Ban T, Hishiya T, et al. Poly(vinyldiaminotriazine) as Highly Selective Hydrogen Bonding Host in Methanol[J]. Polymer Journal, 1996, 28: 1024–1025CrossRefGoogle Scholar
  6. [6]
    Asanuma H, Gotoh S, Ban T, et al. Adsorption of Uric Acid Derivatives in Water by Poly(vinyldiaminotriazine) Through Hydrogen Bonding[J]. Chem. Lett., 1996, 25: 681–682CrossRefGoogle Scholar
  7. [7]
    Asanuma H, Gotoh S, Ban T, et al. Molecular Recognition of Nucleic Acid Bases in Water by Hydrogen Bonding of Poly(vinyldiaminotriazine)[J]. J. Incl. Phenom. Molec. Rec. Chem., 1997, 27: 259–264CrossRefGoogle Scholar
  8. [8]
    Asanuma H, Gotoh S, Ban T, et al. Precise Recognition of Nucleotides and Their Derivatives Through Hydrogen Bonding in Water by Poly(vinyldiaminotriazine)[J]. Supramol. Sci., 1998, 5: 405–410CrossRefGoogle Scholar
  9. [9]
    Slinchenko O, Rachkov A, Miyachi H, et al. Imprinted Polymer Layer for Recognizing Double-stranded DNA[J]. Biosens. Bioelectron., 2004, 20: 1091–1097CrossRefGoogle Scholar
  10. [10]
    Ogiso M, Minoura N, Shinbo T. DNA Detection System Using Molecularly Imprinted Polymer as The Gel Matrix in Electrophoresis[J]. Biosens. Bioelectron., 2007, 22: 1974–1981CrossRefGoogle Scholar
  11. [11]
    Tang L, Yang Y, Bai T, et al. Robust MeO2MA/vinyl-4,6-diamino-1,3,5-triazine Copolymer Hydrogels-mediated Reverse Gene Transfection and Thermo-induced Cell Detachment[J]. Biomaterials, 2011, 32: 1943–1949CrossRefGoogle Scholar
  12. [12]
    Liu ZF, Simpson L, Cardosi MF. Poly(2-vinyl-4,6-diamino-1,3,5-triazine) Nanoparticles: Application in Whole Blood Glucose Biosensors[J]. Advance in Analytical Chemistry, 2013, 3: 14–19Google Scholar
  13. [13]
    Barrett KEJ. Dispersion Polymerization in Organic Media[J]. British Polymer Journal, 1973, 5: 259–271CrossRefGoogle Scholar
  14. [14]
    Tseng CM, Lu YY, El-Aasser MS, et al. Uniform Polymer Particles by Dispersion Polymerization in Alcohol[J]. J. Polym. Sci., Part A: Polym. Chem., 1986, 24: 2995–3007CrossRefGoogle Scholar
  15. [15]
    Krzysztof M, Li W. Atom Transfer Radical Dispersion Polymerization of Styrene in The Presence of PEO-based Macromonomer[J]. Macromolecular Chemistry & Physics, 2011, 212: 1582–1589CrossRefGoogle Scholar
  16. [16]
    Kawaguchi H. Functional Polymer Microspheres[J]. Prog. Polym. Sci., 2000, 25: 1171–1210CrossRefGoogle Scholar
  17. [17]
    Saadat Y, Hosseinzadeh S, Taromi FA, et al. Generalizing the Polymerization Conditions for The Production of Monodisperse Polymeric Particles Via Dispersion Polymerization[J]. Colloid Polym. Sci., 2013, 291: 937–944CrossRefGoogle Scholar
  18. [18]
    Yasuda M, Seki H, Yokoyama H, et al. Simulation of A Particle Formation Stage in The Dispersion Polymerization of Styrene[J]. Macromolecules, 2001, 34: 3261–3270CrossRefGoogle Scholar
  19. [19]
    Gao J, Yu J, Wang W, et al. Dispersion Polymerization of Styrene[J]. Chemical Industry & Engineering Progress, 1998, 3: 318–475Google Scholar
  20. [20]
    Paine AJ, Luymes W, Mcnulty J. Dispersion Polymerization of Styrene in Polar Solvents. 6. Influence of Reaction Parameters on Particle Size and Molecular Weight in Poly(N-vinylpyrrolidone)-stabilized Reactions[J]. Macromolecules, 1990, 23: 3104–3109Google Scholar
  21. [21]
    Liu P, Liu WM, Xue QJ. Graft Polymerization of Styrene from Silica Nanoparticles Using a Dispersion Polymerization Method[J]. Designed Monomers and Polymers, 2004, 7: 253–260CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lei Huang (黄雷)
    • 1
    • 2
  • Xiaotao Wang (王小涛)
    • 1
    • 2
  • Xun Xie
    • 1
    • 2
  • Weihong Xie
    • 3
  • Xuefeng Li
    • 1
    • 2
  • Xinghou Gong
    • 1
    • 2
  • Shijun Long
    • 1
    • 2
  • Huiling Guo
    • 1
    • 2
  • Zuifang Liu (刘最芳)
    • 1
    • 2
  1. 1.Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and EngineeringHubei University of TechnologyWuhanChina
  2. 2.Collaborative Innovation Center of Green Light-weight Materials and ProcessingHubei University of TechnologyWuhanChina
  3. 3.School of Food and Biological EngineeringHubei University of TechnologyWuhanChina

Personalised recommendations