Advertisement

A Modified Co-precipitation Method to Prepare Cu/ZnO/Al2O3 Catalyst and Its Application in Low Temperature Water-gas Shift (LT-WGS) Reaction

  • Longlong Xu (许龙龙)
  • Dong Peng
  • Wenhui Liu
  • Yimin Feng
  • Yanan Hou
  • Xiongjian Li
  • Chi Huang (黄驰)
Advanced Materials

Abstract

A modified co-precipitation method for the production of Cu/ZnO/Al2O3 complex was studied. The modification was that part of Al was introduced by adding Al3+ into Cu2+/Zn2+ solution, and the rest of Al was added after co-precipitation step in the form of pseudo-boehmite. The prepared samples were characterized by different techniques such as X-ray diffraction, N2 adsorption, H2-N2O titration, temperature programmed reduction and scanning electron microscopy. X-ray diffraction characterizations revealed that Al3+ can be doped in aurichalcite lattice, and the maximum doping amount of Al3+ was 5.0% of total Cu and Zn atoms. The Cu/ZnO/Al2O3 sample produced by the modified method, in which co-precipitated Al3+ was 2.5% of total Cu and Zn atoms showed much better activity and stability in water-gas shift reaction than commercial sample. The high Cu surface area (26.1 m2/g) obtained by decompositon of doped aurichalcite is believed to be responsible for the activity enhancement. The stability was enhanced mainly because of the support effect of γ-Al2O3, which was decomposed from pseudo-boehmite in the calcination step.

Key words

Cu/ZnO/Al2O3 co-precipitation water-gas shift aurichalcite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bahmani M, Vasheghani Farahani B, Sahebdelfar S. Preparation of High Performance Nano-Sized Cu/ZnO/Al2O3 Methanol Synthesis Catalyst via Aluminum Hydrous Oxide Sol[J]. Appl. Catal., A, 2016, 520 (Supplement C): 178–187CrossRefGoogle Scholar
  2. [2]
    Bagherzadeh SB, Haghighi M. Plasma-Enhanced Comparative Hydrothermal and Coprecipitation Preparation of CuO/ZnO/Al2O3 Nanocatalyst Used in Hydrogen Production via Methanol Steam Reforming[J]. Energy Convers. Manage., 2017, 142 (Supplement C): 452–465CrossRefGoogle Scholar
  3. [3]
    Wang C, Liu C, Fu W, et al. The Water-Gas Shift Reaction for Hydrogen Production from Coke Oven Gas over Cu/ZnO/Al2O3 Catalyst[J]. Catal. Today, 2016, 263: 46–51CrossRefGoogle Scholar
  4. [4]
    Kowalik P, Próchniak W, Borowiecki T. The Effect of Alkali Metals Doping on Properties of Cu/ZnO/Al2O3 Catalyst for Water Gas Shift[J]. Catal. Today, 2011, 176 (1): 144–148CrossRefGoogle Scholar
  5. [5]
    Tanaka Y, Takeguchi T, Kikuchi R, et al. Influence of Preparation Method and Additive for Cu-Mn Spinel Oxide Catalyst on Water Gas Shift Reaction of Reformed Fuels[J]. Appl. Catal., A, 2005, 279 (1–2): 59–66CrossRefGoogle Scholar
  6. [6]
    Zhang Y, Liu J, Li Y, et al. Enhancement of Active Anticorrosion via Ce-doped Zn-Al Layered Double Hydroxides Embedded in Sol-Gel Coatings on Aluminum Alloy[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2017, 32 (5): 1199–1204CrossRefGoogle Scholar
  7. [7]
    Yan W, Xiao H, Jiang T, et al. Fabrication and Thermal Insulating Properties of ITO/PVB Nanocomposites for Energy Saving Glass[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2017, 32 (1): 63–66CrossRefGoogle Scholar
  8. [8]
    Xie D, Wan L, Song D, et al. Low-temperature Sintering of FeCuCo based Pre-alloyed Powder for Diamond Bits[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31 (4): 805–810CrossRefGoogle Scholar
  9. [9]
    Zhou Z, Mei B, Song J, et al. Preparation of Nanometer Nd3+,Y3+ Co-doped CaF2 Powder by Coprecipitation-azeotropic Distillation Technique[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31 (4): 827–829CrossRefGoogle Scholar
  10. [10]
    Zhang D, Zhao G, Yu J, et al. Thermodynamic and Kinetic Studies of Effective Adsorption of 2,4,6-trichlorophenol onto Calcine Mg/Al-CO3 Layered Double Hydroxide[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31 (6): 1211–1218CrossRefGoogle Scholar
  11. [11]
    Xiu S, Wei T, Ye Y, et al. Preparation of AZO Nanoparticles, Ceramic Targets and Thin Films by a Co-precipitaition Method[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2015, 30 (6): 1134–1139CrossRefGoogle Scholar
  12. [12]
    Budiman A, Ridwan M, Kim SM, et al. Design and Preparation of High-Surface-Area Cu/ZnO/Al2O3 Catalysts Using a Modified Co-precipitation Method for the Water-Gas Shift Reaction[J]. Appl. Catal., A, 2013, 462–463 (0): 220–226CrossRefGoogle Scholar
  13. [13]
    Nishida K, Li D, Zhan Y, et al. Effective MgO Surface Doping of Cu/Zn/Al Oxides as Water–Gas Shift Catalysts[J]. Appl. Clay Sci., 2009, 44 (3-4): 211–217CrossRefGoogle Scholar
  14. [14]
    Kowalik P, Konkol M, Antoniak K, et al. The Effect of the Precursor Ageing on Properties of the Cu/ZnO/Al2O3 Catalyst for Low Temperature Water-Gas Shift (LT-WGS)[J]. J. Mol. Catal. A: Chem., 2014, 392 (0): 127–133CrossRefGoogle Scholar
  15. [15]
    Lima AAG, Nele M, Moreno EL, et al. Composition Effects on the Activity of Cu-ZnO-Al2O3 Based Catalysts for the Water Gas Shift Reaction: A Statistical Approach[J]. Appl. Catal., A, 1998, 171 (1): 31–43CrossRefGoogle Scholar
  16. [16]
    Tarasov A, Schumann J, Girgsdies F, et al. Thermokinetic Investigation of Binary Cu/Zn Hydroxycarbonates as Precursors for Cu/ZnO Catalysts[J]. Thermochim. Acta, 2014, 591 (0): 1–9CrossRefGoogle Scholar
  17. [17]
    Fu W, Bao Z, Ding W, et al. The Synergistic Effect of the Structural Precursors of Cu/ZnO/Al2O3 Catalysts for Water-Gas Shift Reaction[J]. Catal. Commun., 2011, 12 (6): 505–509CrossRefGoogle Scholar
  18. [18]
    Behrens M, Brennecke D, Girgsdies F, et al. Understanding the Complexity of a Catalyst Synthesis: Co-precipitation of Mixed Cu,Zn,Al Hydroxycarbonate Precursors for Cu/ZnO/Al2O3 Catalysts Investigated by Titration Experiments[J]. Appl. Catal., A, 2011, 392 (1): 93–102CrossRefGoogle Scholar
  19. [19]
    Li J, Inui T. Characterization of Precursors of Methanol Synthesis Catalysts, Copper/Zinc/Aluminum Oxides, Precipitated at Different pHs and Temperatures[J]. Appl. Catal., A, 1996, 137 (1): 105–117CrossRefGoogle Scholar
  20. [20]
    Figueiredo RT, Andrade HMC, Fierro JLG. Influence of the Preparation Methods and Redox Properties of Cu/ZnO/Al2O3 Catalysts for the Water Gas Shift Reaction[J]. J. Mol. Catal. A: Chem., 2010, 318 (1-2): 15–20CrossRefGoogle Scholar
  21. [21]
    Fujita S, Kanamori Y, Satriyo AM, et al. Methanol Synthesis from CO2 over Cu/ZnO Catalysts Prepared from Various Coprecipitated Precursors[J]. Catal. Today, 1998, 45 (1-4): 241–244CrossRefGoogle Scholar
  22. [22]
    Nishida K, Atake I, Li D, et al. Effects of Noble Metal-Doping on Cu/ZnO/Al2O3 Catalysts for Water–Gas Shift Reaction: Catalyst Preparation by Adopting “Memory Effect” of Hydrotalcite[J]. Appl. Catal., A, 2008, 337 (1): 48–57CrossRefGoogle Scholar
  23. [23]
    Atake I, Nishida K, Li D, et al. Catalytic Behavior of Ternary Cu/ZnO/Al2O3 Systems Prepared by Homogeneous Precipitation in Water-Gas Shift Reaction[J]. J. Mol. Catal. A: Chem., 2007, 275 (1–2): 130–138CrossRefGoogle Scholar
  24. [24]
    van Garderen N, Clemens FJ, Aneziris CG, et al. Improved γ-Alumina Support Based Pseudo-Boehmite Shaped by Micro-Extrusion Process for Oxygen Carrier Support Application[J]. Ceram. Int., 2012, 38 (7): 5481–5492CrossRefGoogle Scholar
  25. [25]
    Li J, Qian L, Hu L, et al. Low-temperature Hydrogenation of Maleic Anhydride to Succinic Anhydride and γ-Butyrolactone over Pseudo-Boehmite Derived Alumina Supported Metal (metal=Cu, Co and Ni) Catalysts[J]. Chin. Chem. Lett., 2016, 27 (7): 1004–1008CrossRefGoogle Scholar
  26. [26]
    HG/T 3553–2005. Analytical Method of Chemical Composition in Low Temperature Carbon Monoxide Shift Catalyst[S].Google Scholar
  27. [27]
    Xu C, Zheng L, Deng D, et al. Effect of Activation Temperature on the Surface Copper Particles and Catalytic Properties of Cu-Ni-Mg-Al Oxides from Hydrotalcite-like Precursors[J]. Catal. Commun., 2011, 12 (11): 996–999CrossRefGoogle Scholar
  28. [28]
    Zhang Y, Zhang J, Zhang X, et al. Direct Preparation and Formation Mechanism of Belt-like Doped VO2(M) with Rectangular Cross Sections by One-step Hydrothermal Route and TheirPhase Transition and Optical Switching Properties[J]. J. Alloys Compd., 2013, 570: 104–113CrossRefGoogle Scholar
  29. [29]
    Zhang Y, Zhang J, Zhang X, et al. Influence of Different Additives on the Synthesis of VO2 Polymorphs[J]. Ceram. Int., 2013, 39: 8363–8376CrossRefGoogle Scholar
  30. [30]
    Shishido T, Yamamoto M, Li D, et al. Water-Gas Shift Reaction over Cu/ZnO and Cu/ZnO/Al2O3 Catalysts Prepared by Homogeneous Precipitation[J]. Appl. Catal., A, 2006, 303 (1): 62–71CrossRefGoogle Scholar
  31. [31]
    Ginés MJL, Amadeo N, Laborde M, et al. Activity and Structure-sensitivity of the Water-Gas Shift Reaction over CuZnAl Mixed Oxide Catalysts[J]. Appl. Catal., A, 1995, 131 (2): 283–296CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Longlong Xu (许龙龙)
    • 1
  • Dong Peng
    • 1
  • Wenhui Liu
    • 2
  • Yimin Feng
    • 1
  • Yanan Hou
    • 1
  • Xiongjian Li
    • 2
  • Chi Huang (黄驰)
    • 3
  1. 1.Tianhua Chemical BranchXi’an Sunward Aeromat Co. Ltd.Xi’anChina
  2. 2.Sanjiang Chemical Factory of CSSGYuananChina
  3. 3.College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina

Personalised recommendations