Enhanced Photocatalytic Activity of BiPO4 Photocatalyst by Surface Modification of Fe(III) Cocatalyst

  • Chang Wang (汪畅)
  • Xuan Qin
  • Shan Lin (林杉)Email author
Advanced Materials


Metal ions like Fe(III) were testified to be efficient co-photocatalyst in the field of environmental governance. Hence, a series of BiPO4/Fe(III) materials were prepared via a hydrothermal method and impregnation. The experimental results indicated that normal organic dye was effectively removed by BiPO4 with the presence of Fe(III) as a co-photocatalyst. The enhanced removal mechanism was attributed to the easy transfer of photo-induced electron-hole pairs and relatively high productivity of active redical by synergism of Fe(III).

Key words

BiPO4 Fe(III) nanostructures synergism photocatalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Shannon MA, Bohn PW, Elimelech M, et al. Science and Technology for Water Purification in the Coming Decades[J]. Nature., 2008, 452: 337–346CrossRefGoogle Scholar
  2. [2]
    Gebald C, Wurzbacher JA, Tingaut P, et al. Amine-based Nanofibrillated Cellulose as Adsorbent for CO2 Capture from Air[J]. Environ. Sci. Technol., 2011, 45: 9101–9108CrossRefGoogle Scholar
  3. [3]
    Lee H, Choi J, Lee S, et al. Kinetic Enhancement in Photocatalytic Oxidation of Organic Compounds by WO3 in the Presence of Fenton-like reagent[J]. Appl. Catal. B Environ., 2013, 138-139: 311–317CrossRefGoogle Scholar
  4. [4]
    Shen Y, Fang Q, Chen B. Environmental Applications of Three-dimensional Graphene-based Macrostructures: Adsorption, Transformation, and Detection[J]. Environ. Sci. Technol., 2014, 49: 67–84CrossRefGoogle Scholar
  5. [5]
    Ranson M, Cox B, Keenan C, et al. The Impact of Pollution Prevention on Toxic Environmental Releases from US Manufacturing Facilities[J]. Environ. Sci. Technol., 2015, 49: 12951–12957CrossRefGoogle Scholar
  6. [6]
    Wang Y, Shi R, Lin J, et al. Enhancement of Photocurrent and Photocatalytic Activity of ZnO Hybridized with Graphite-like C3N4[J]. Energy Environ. Sci., 2011, 4: 2922–2929CrossRefGoogle Scholar
  7. [7]
    Khin MM, Nair AS, Babu VJ, et al. A review on Nanomaterials for Environmental Remediation[J]. Energy Environ. Sci., 2012, 5: 8075–8109CrossRefGoogle Scholar
  8. [8]
    Casbeer E, Sharm VK, Li XZ, Synthesis and Photocatalytic Activity of Ferrites Under Visible Light: A Review[J]. Sep. Purif. Technol., 2012, 87: 1–14CrossRefGoogle Scholar
  9. [9]
    Qu YQ, Duan XF. Progress, Challenge and Perspective of Heterogeneous Photocatalysts[J]. Chem. Soc. Rev., 2013, 42: 2568–2580CrossRefGoogle Scholar
  10. [10]
    Pan C, Zhu Y. New Type of BiPO4 Oxy-acid Salt Photocatalyst with high Photocatalytic Activity on Degradation of Dye[J]. Environ. Sci. Technol., 2010, 44: 5570–5574CrossRefGoogle Scholar
  11. [11]
    Zhu Y, Liu Y, Ling Q, et al. Reflux Preparation and Photocatalytic Performance of Bismuth Phosphate Nanorods[J]. Acta Phys. Chim. Sin., 2013, 29: 576–584Google Scholar
  12. [12]
    Becerro AI, Criado J, Gontard LC, et al. Bifunctional, Monodisperse BiPO4-based Nanostars: Photocatalytic Activity and Luminescent Applications[J]. Cryst. Growth Des., 2014, 14: 3319–3326CrossRefGoogle Scholar
  13. [13]
    Pan CS, Xu J, Wang YJ, et al. Dramatic Activity of C3N4/BiPO4 Photocatalyst with Core/Shell Structure Formed by Self-Assembly[J]. Adv. Funct. Mater., 2012, 22: 1518–1524CrossRefGoogle Scholar
  14. [14]
    Yu HG, Irie H, Shimodaira Y, et al. An Efficient Visible-light-sensitive Fe (III)-grafted TiO2 Photocatalyst[J]. J. Phys. Chem. C., 2010, 114: 16481–16487CrossRefGoogle Scholar
  15. [15]
    Yu HG, Xu LL, Wang P. Enhanced Photoinduced Stability and Photocatalytic Activity of AgBr Photocatalyst by Surface Modification of Fe(III) Cocatalyst[J]. Appl. Catal. B Environ., 2014, 144: 75–82CrossRefGoogle Scholar
  16. [16]
    Liu R, Wang P, Wang XF, et al. UV-and Visible-light Photocatalytic Activity of Simultaneously Deposited and Doped Ag/Ag (I)-TiO2 Photocatalyst[J]. J. Phys. Chem. C., 2012, 116: 17721–17728CrossRefGoogle Scholar
  17. [17]
    Wang XF, Li SF, Ma YQ, et al. H2WO4.H2O/Ag/AgCl Composite Nanoplates: A Plasmonic Z-scheme Visible-light Photocatalyst[J]. J. Phys. Chem. C., 2011, 115: 14648–14655CrossRefGoogle Scholar
  18. [18]
    Maensiri S, Masingboon C, Laokul P, et al. Egg White Synthesis and Photoluminescence of Platelike Clusters of CeO2 Nanoparticles[J]. Cryst. Growth Des., 2007, 7: 950–955CrossRefGoogle Scholar
  19. [19]
    Irie H, Miura S, Kamiya K, et al. Efficient Visible Light-sensitive Photocatalysts: Grafting Cu (II) Ions Onto TiO2 and WO3 Photocatalysts[J]. Chem. Phys. Lett., 2008, 457: 202–205CrossRefGoogle Scholar
  20. [20]
    Abe R, Takami H, Murakami N, et al. Pristine Simple Oxides as Visible Light Driven Photocatalysts: Highly Efficient Decomposition of Organic Compounds Over Platinum-loaded Tungsten Oxide[J]. J. Am. Chem. Soc., 2008, 130: 7780–7781CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chang Wang (汪畅)
    • 1
  • Xuan Qin
    • 2
  • Shan Lin (林杉)
    • 3
    Email author
  1. 1.Institute of Environment and HealthJianghan UniversityWuhanChina
  2. 2.The Fifth Hospital of WuhanWuhanChina
  3. 3.College of Resources and EnvironmentHuazhong Agricultural UniversityWuhanChina

Personalised recommendations