Temperature Induces Self-assembly of Silicon Nano/Micro-structure based on Multi-physics Approach

  • Li’nan Zhang (张俐楠)
  • Congxiu Cheng
  • Jihwan Song
  • Liqun Wu
  • Dongchoul KimEmail author
Advanced Materials


A three-dimensional dynamic model for nano/micro-fabrications of silicon was presented. With the developed model, the fabrication process of silicon on nothing (SON) structure was quantitatively investigated. We employ a diffuse interface model that incorporates the mechanism of surface diffusion. The mechanism of the fabrication is systematically integrated for high reliability of computational analysis. A semi-implicit Fourier spectral scheme is applied for high efficiency and numerical stability. Moreover, the theoretical analysis provides the guidance that is ordered by the fundamental geometrical design parameters to guide different fabrications of SON structures. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of nano/micro-fabrications.

Key words

nano/micro-structure phase field model silicon on nothing self-assembly 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sudoh K, Iwasaki H, Hiruta R, et al. Void Shape Evolution and Formation of Silicon-on-nothing Structures during Hydrogen Annealing of Hole Arrays on Si(001)[J]. Journal of Applied Physics, 2009, 105(8): 083536–083536CrossRefGoogle Scholar
  2. [2]
    Sudoh K, Iwasaki H, Kuribayashi H, et al. Numerical Study on Shape Transformation of Silicon Trenches by High-temperature Hydrogen Annealing[J]. Japanese Journal of Applied Physics, 2004, 43(9A): 5937–5941CrossRefGoogle Scholar
  3. [3]
    Sato T, Mitsutake K, Mizushima I, et al. Micro-structure Transformation of Silicon: A Newly Developed Transformation Technology for Patterning Silicon Surfaces Using the Surface Migration of Silicon Atoms by Hydrogen Annealing[J]. Japanese Journal of Applied Physics, 2000, 39(9A): 5033–5038CrossRefGoogle Scholar
  4. [4]
    Sato T, Mizushima I, Taniguchi S, et al. Fabrication of Silicon-on-nothing Structure by Substrate Engineering Using the Empty-space-in-silicon Formation Technique[J]. Japanese Journal of Applied Physics, 2004, 43(1): 12–18CrossRefGoogle Scholar
  5. [5]
    Depauw V, Gordon I, Beaucarne G, et al. Large-area Monocrystalline Silicon Thin Films by Annealing of Macroporous Arrays: Understanding and Tackling Defects in the Material[J]. Journal of Applied Physics, 2009, 106(3): 033516–10CrossRefGoogle Scholar
  6. [6]
    Ghannam MY, Alomar AS, Poortmans J, et al. Interpretation of Macropore Shape Transformation in Crystalline Silicon upon High Temperature Processing[J]. Journal of Applied Physics, 2010, 108(7): 074902–7CrossRefGoogle Scholar
  7. [7]
    Chen YJ, Kang WL. Experimental Study and Modeling of Double-surrounding-gate and Cylindrical Silicon-on-nothing MOSFETs[J]. Microelectronic Engineering, 2012, 97(3): 138–143CrossRefGoogle Scholar
  8. [8]
    Kilchytska V, Chung TM, Olbrechts B, et al. Electrical Characterization of True Silicon-On-Nothing MOSFETs Fabricated by Si Layer Transfer over a Pre-etched cavity[J]. Solid State Electronics, 2007, 51(9): 1238–1244CrossRefGoogle Scholar
  9. [9]
    Kasturi P, Saxena M, Gupta RS. Modeling and Simulation of STacked Gate Oxide (STGO) Architecture in Silicon-On-Nothing (SON) MOSFET[J]. Solid State Electronics, 2005, 49(10): 1639–1648CrossRefGoogle Scholar
  10. [10]
    Mueller T, Dantz D, Ammon Wv, et al. Modeling of Morphological Changes by Surface Diffusion in Silicon Trenches[J]. Journal of The Electrochemical Society, 2006, 2(2): 363Google Scholar
  11. [11]
    Kumari V, Manoj Saxena M, Gupta R S, et al. Simulation Study of Insulated Shallow Extension Silicon On Nothing (ISESON) MOSFET for High Temperature Applications[J]. Microelectronics Reliability, 2012, 52(8):1610–1612CrossRefGoogle Scholar
  12. [12]
    Kumari V, Manoj Saxena M, Gupta RS, et al. Temperature Dependent Drain Current Model for Gate Stack Insulated Shallow Extension Silicon On Nothing(ISESON) MOSFET for Wide Operating Temperature Range[J]. Microelectronics Reliability, 2012, 52(6): 974–983CrossRefGoogle Scholar
  13. [13]
    Kim D. Computational Analysis of the Interfacial Effect on Electromigration in Flip Chip Solder Joints[J]. Microelectronic Engineering, 2009, 86(10): 2132–2137CrossRefGoogle Scholar
  14. [14]
    Kim D, Lu W. Three-dimensional Model of Electrostatically Induced Pattern Formation in Thin Polymer Films[J]. Physical Review B, 2006, 73(3): 035206–7CrossRefGoogle Scholar
  15. [15]
    Kim D, Lu W. Creep Flow, Diffusion, and Electromigration in Small Scale Interconnects[J]. Journal of the Mechanics & Physics of Solids, 2006, 54(12): 2554–2568CrossRefGoogle Scholar
  16. [16]
    Kim DC, Lu W. Self-organized Nanostructures in Multi-phase Epilayers[J]. Nanotechnology, 2004, 15(5): 667–674CrossRefGoogle Scholar
  17. [17]
    Chen LQ. Phase-field Models for Microstructure Evolution[J]. Annual Review of Materials Research, 2002, 32(1): 113–140CrossRefGoogle Scholar
  18. [18]
    Lu W, Kim DC. Patterning Nanoscale Structures by Surface Chemistry[J]. Nano Letters, 2004, 4(2): 313–316CrossRefGoogle Scholar
  19. [19]
    Zhang L, Kim S, Kim D. Multiphysics and Multiscale Analysis for Chemotherapeutic Drug[J]. Biomed Research International, 2015, 2015(12): 493985–493999Google Scholar
  20. [20]
    Cahn J. Free Energy of a Nonuniform System.1. Interfacial Free Energy[J]. Journal of Chemical Physics, 1958, 28(2): 258–267Google Scholar
  21. [21]
    Ascher UM, Ruuth SJ, Wetton BTR. Implicit Explicit Methods for Time-Dependent Partial-Differential Equations[J]. Siam Journal on Numerical Analysis, 1995, 32(3): 797–823CrossRefGoogle Scholar
  22. [22]
    Herino R, Perio A, Barla K, et al. Microstructure of Porous Silicon and its Evolution with Temperature[J]. Materials Letters, 1984, 2(6): 519–523CrossRefGoogle Scholar
  23. [23]
    Wijaranakula W. An Experimental Estimation of Silicon Interstitial Diffusivity[J]. Journal of Applied Physics, 1990, 67(12): 7624–7627CrossRefGoogle Scholar
  24. [24]
    Lee MCM, Wu MC. Thermal Annealing in Hydrogen for 3-D Profile Transformation on Silicon-on-insulator and Sidewall Roughness Reduction[J]. Journal of Microelectromechanical Systems, 2006, 15(2): 338–343CrossRefGoogle Scholar
  25. [25]
    Kim J, Song J, Kim K, et al. Hollow Mocrotube Resonators via Silicon Self-assembly for Mass Sensing Applications[J]. Nano Letters, 2016, 2016(16): 1537–1545CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Li’nan Zhang (张俐楠)
    • 1
  • Congxiu Cheng
    • 1
  • Jihwan Song
    • 2
  • Liqun Wu
    • 1
  • Dongchoul Kim
    • 2
    Email author
  1. 1.School of Mechanical EngineeringHangzhou Dianzi UniversityHangzhouChina
  2. 2.Department of Mechanical EngineeringSogang UniversitySeoulRepublic of Korea

Personalised recommendations