Effects of Electroless Plating with Cu Content on Thermoelectric and Mechanical Properties of p-type Bi0.5Sb1.5Te3 Bulk Alloys

  • Xueting Dai (代雪婷)
  • Zhongyue Huang (黄中月)
  • Yuan Yu
  • Chongjian Zhou
  • Fangqiu Zu
Advanced Materials


Bi0.5Sb1.5Te3/Cu core/shell powders were prepared by electroless plating and hydrogen reduction, and then sintered into bulk by spark plasma sintering. After electroless plating, with increasing the Cu content, the electrical conductivity keeps enhancing significantly. The highest electrical conductivity reaches 3341S/cm at room temperature in Bi0.5Sb1.5Te3 with 0.67wt% Cu bulk sample. Moreover, the lowest lattice thermal conductivity reaches 0.32 W/m·K at 572.2 K in Bi0.5Sb1.5Te3 with 0.67wt% Cu bulk sample, which is caused by the scattering of the rich-copper particles with different dimensions and massive grain boundaries. According to the results, the ZT values of all Bi0.5Sb1.5Te3/Cu bulk samples have improved in a high temperature range. In Bi0.5Sb1.5Te3 with 0.15wt% Cu bulk sample, the highest ZT value at 573.4 K is 0.81. When the Cu content increases to 0.67wt%, the highest ZT value reaches 0.85 at 622.2 K. Meanwhile, the microhardness increases with increasing the Cu content.

Key words

Bi0.5Sb1.5Te3 electroless plating thermoelectric property mechanical property spark plasma sintering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Rowe DM. CRC Handbook oft Termoelectrics[M]. CRC Press, 1995.CrossRefGoogle Scholar
  2. [2]
    Goldsmid H. Thermoelectric Refrigeration[M]. Springer, 2013Google Scholar
  3. [3]
    Hsu KF, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk Thermoelectric materials with High Figure of Merit[J]. Science, 2004, 303(5659): 818–821CrossRefGoogle Scholar
  4. [4]
    Liu Y, Xu W, Liu DB, et al. Enhanced Thermoelectric Properties of Ga-doped In2O3 Ceramics Via Synergistic Band Gap Engineering and Phonon Suppression[J]. Physical Chemistry Chemical Physics, 2015, 17(17): 11229–11233CrossRefGoogle Scholar
  5. [5]
    He Z, Stiewe C, Platzek D, et al. Effect of Ceramic Dispersion on Thermoelectric Properties of Nano ZrO2/CoSb3 Composites[J]. Journal of Applied Physics, 2007, 101(4): 043707Google Scholar
  6. [6]
    Alam H, Ramakrishna S. A Review on the Enhancement of Figure of Merit from Bulk to Nano-Thermoelectric Materials[J]. Nano Energy, 2013, 2(2): 190–212CrossRefGoogle Scholar
  7. [7]
    Fu N, Sun L, Liang S, et al. Enhanced Thermoelectric Power Factor of Bi2Sr2CO2Oy Thin Films by Incorporating Au Nanoparticles[J]. Materials & Design, 2016, 89: 791–794CrossRefGoogle Scholar
  8. [8]
    Cappelli E, Bellucci A, Medici L, et al. Nano-crystalline Ag-PbTe Thermoelectric Thin Films by a Multi-Target PLD system[J]. Applied Surface Science, 2015, 336: 283–289CrossRefGoogle Scholar
  9. [9]
    Slack GA, Hussain MA. The Maximum Possible Conversion Efficiency of Silicon-Germanium Thermoelectric Generators[J]. Journal of Applied Physics, 1991, 70(5): 2694–2718CrossRefGoogle Scholar
  10. [10]
    Chung DY, Hogan T, Brazis P, et al. CsBi4Te6: A High-Performance Thermoelectric Material for Llow-Temperature Applications[J]. Science, 2000, 287(5455): 1024–1027CrossRefGoogle Scholar
  11. [11]
    Goldsmid HJ. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation[J]. Materials, 2014, 7(4): 2577–2592CrossRefGoogle Scholar
  12. [12]
    Zhao LD, Zhang BP, Li JF, et al. Enhanced Thermoelectric and Mechanical Properties in Textured n-type Bi2Te3 Prepared by Spark Plasma Sintering[J]. Solid State Sciences, 2008, 10(5): 651–658CrossRefGoogle Scholar
  13. [13]
    Greenaway DL, Harbeke G. Band Structure of Bismuth Telluride, Bismuth Selenide and Their Respective Alloys[J]. Journal of Physics and Chemistry of Solids, 1965, 26(10): 1585–1604CrossRefGoogle Scholar
  14. [14]
    Fan FJ, Yu B, Wang YX, et al. Colloidal Synthesis of Cu2CdSnSe4 Nanocrystals and Hot-Pressing to Enhance the Tthermoelectric Figure-of-Merit[J]. Journal of the American Chemical Society, 2011, 133(40): 15910–15913CrossRefGoogle Scholar
  15. [15]
    Lee PY, Chen TC, Huang JY, et al. Enhancement of the Thermoelectric Performance in Nano-/Micro-Structured p-type Bi0.4Sb1.6Te3 Fabricated by Mechanical Alloying and Vacuum Hot Pressing[J]. Journal of Alloys and Compounds, 2014, 615: S476–S481CrossRefGoogle Scholar
  16. [16]
    Sakamoto T, Iida T, Matsumoto A, et al. Thermoelectric Characteristics of a Commercialized Mg2Si Source Doped with Al, Bi, Ag, and Cu[J], Journal of Electronic Materials, 2010, 39(9): 1708–1713CrossRefGoogle Scholar
  17. [17]
    Fan XA, Yang JY, Zhu W, et al. Microstructure and Thermoelectric Properties of n-type Bi2Te2.85Se0.15 Prepared by Mechanical Alloying and Plasma Activated Sintering[J]. Journal of Alloys and Compounds, 2006, 420(1): 256–259CrossRefGoogle Scholar
  18. [18]
    Fan J, Liu H, Shi X, et al. Investigation of Thermoelectric Properties of Cu2GaxSn1-xSe3 Diamond-Like Compounds by Hot Pressing and Spark Plasma Sintering[J]. Acta Materialia, 2013, 61(11): 4297–4304CrossRefGoogle Scholar
  19. [19]
    Wan S, Huang X, Qiu P, et al. The Effect of Short Carbon Fibers on the Tthermoelectric and Mechanical Properties of p-type CeFe4Sb12 Skutterudite Composites[J]. Materials & Design, 2015, 67: 379–384CrossRefGoogle Scholar
  20. [20]
    Shelimova LE, Karpinskii OG, Konstantinov PP, et al. Thermoelectric Properties of the Layered Compound GeBi4Te7 Doped with Copper[J]. Inorganic Materials, 2002, 38(8): 790–794CrossRefGoogle Scholar
  21. [21]
    Liu WS, Zhang Q, Lan Y, et al. Thermoelectric Property Studies on Cu-Doped n-type CuxBi2Te2.7Se0.3 Nanocomposites[J]. Advanced Energy Materials, 2011, 1(4): 577–587CrossRefGoogle Scholar
  22. [22]
    Luo L, Wu Y, Li J, et al. Preparation of Nickel-Coated Tungsten Carbide Powders by room Temperature Ultrasonic-Assisted Electroless Plating[J]. Surface and Coatings Technology, 2011, 206(6): 1091–1095CrossRefGoogle Scholar
  23. [23]
    Lotgering FK. Topotactical Reactions with Ferrimagnetic Oxides Having Hexagonal Crystal Structures-I[J]. Journal of Inorganic and Nuclear Chemistry, 1959, 9(2): 113–123CrossRefGoogle Scholar
  24. [24]
    Zhao LD, Zhang BP, Liu WS, et al. Effect of Mixed Grain Sizes on Thermoelectric Performance of Bi2Te3 Compound[J]. Journal of Applied Physics, 2009, 105(2): 023704CrossRefGoogle Scholar
  25. [25]
    Huang Z, Dai X, Yu Y, et al. Enhanced Thermoelectric Properties of p-type Bi0.5Sb1.5Te3 bulk alloys by Electroless Plating with Cu and Annealing[J]. Scripta Materialia, 2016, 118: 19–23CrossRefGoogle Scholar
  26. [26]
    Liu XJ, Wang CP, Ohnuma I, et al. Thermodynamic Assessment of the Phase Diagrams of The Cu-Sb and Sb-Zn Systems[J]. Journal of Phase Equilibria, 2000, 21(5): 432–442CrossRefGoogle Scholar
  27. [27]
    Tang X, Xie W, Li H, et al. Preparation and Thermoelectric Transport Properties of High-Performance p-type Bi2Te3 with Layered Nanostructure[J]. Applied Physics Letters, 2007, 90(1): 12102–12102CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xueting Dai (代雪婷)
    • 1
  • Zhongyue Huang (黄中月)
    • 1
  • Yuan Yu
    • 1
  • Chongjian Zhou
    • 2
  • Fangqiu Zu
    • 1
  1. 1.School of Materials Science & EngineeringHefei University of TechnologyHefeiChina
  2. 2.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations