Skip to main content
Log in

Effects of Electroless Plating with Cu Content on Thermoelectric and Mechanical Properties of p-type Bi0.5Sb1.5Te3 Bulk Alloys

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Bi0.5Sb1.5Te3/Cu core/shell powders were prepared by electroless plating and hydrogen reduction, and then sintered into bulk by spark plasma sintering. After electroless plating, with increasing the Cu content, the electrical conductivity keeps enhancing significantly. The highest electrical conductivity reaches 3341S/cm at room temperature in Bi0.5Sb1.5Te3 with 0.67wt% Cu bulk sample. Moreover, the lowest lattice thermal conductivity reaches 0.32 W/m·K at 572.2 K in Bi0.5Sb1.5Te3 with 0.67wt% Cu bulk sample, which is caused by the scattering of the rich-copper particles with different dimensions and massive grain boundaries. According to the results, the ZT values of all Bi0.5Sb1.5Te3/Cu bulk samples have improved in a high temperature range. In Bi0.5Sb1.5Te3 with 0.15wt% Cu bulk sample, the highest ZT value at 573.4 K is 0.81. When the Cu content increases to 0.67wt%, the highest ZT value reaches 0.85 at 622.2 K. Meanwhile, the microhardness increases with increasing the Cu content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowe DM. CRC Handbook oft Termoelectrics[M]. CRC Press, 1995.

    Book  Google Scholar 

  2. Goldsmid H. Thermoelectric Refrigeration[M]. Springer, 2013

    Google Scholar 

  3. Hsu KF, Loo S, Guo F, et al. Cubic AgPbmSbTe2+m: Bulk Thermoelectric materials with High Figure of Merit[J]. Science, 2004, 303(5659): 818–821

    Article  Google Scholar 

  4. Liu Y, Xu W, Liu DB, et al. Enhanced Thermoelectric Properties of Ga-doped In2O3 Ceramics Via Synergistic Band Gap Engineering and Phonon Suppression[J]. Physical Chemistry Chemical Physics, 2015, 17(17): 11229–11233

    Article  Google Scholar 

  5. He Z, Stiewe C, Platzek D, et al. Effect of Ceramic Dispersion on Thermoelectric Properties of Nano ZrO2/CoSb3 Composites[J]. Journal of Applied Physics, 2007, 101(4): 043707

    Google Scholar 

  6. Alam H, Ramakrishna S. A Review on the Enhancement of Figure of Merit from Bulk to Nano-Thermoelectric Materials[J]. Nano Energy, 2013, 2(2): 190–212

    Article  Google Scholar 

  7. Fu N, Sun L, Liang S, et al. Enhanced Thermoelectric Power Factor of Bi2Sr2CO2Oy Thin Films by Incorporating Au Nanoparticles[J]. Materials & Design, 2016, 89: 791–794

    Article  Google Scholar 

  8. Cappelli E, Bellucci A, Medici L, et al. Nano-crystalline Ag-PbTe Thermoelectric Thin Films by a Multi-Target PLD system[J]. Applied Surface Science, 2015, 336: 283–289

    Article  Google Scholar 

  9. Slack GA, Hussain MA. The Maximum Possible Conversion Efficiency of Silicon-Germanium Thermoelectric Generators[J]. Journal of Applied Physics, 1991, 70(5): 2694–2718

    Article  Google Scholar 

  10. Chung DY, Hogan T, Brazis P, et al. CsBi4Te6: A High-Performance Thermoelectric Material for Llow-Temperature Applications[J]. Science, 2000, 287(5455): 1024–1027

    Article  Google Scholar 

  11. Goldsmid HJ. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation[J]. Materials, 2014, 7(4): 2577–2592

    Article  Google Scholar 

  12. Zhao LD, Zhang BP, Li JF, et al. Enhanced Thermoelectric and Mechanical Properties in Textured n-type Bi2Te3 Prepared by Spark Plasma Sintering[J]. Solid State Sciences, 2008, 10(5): 651–658

    Article  Google Scholar 

  13. Greenaway DL, Harbeke G. Band Structure of Bismuth Telluride, Bismuth Selenide and Their Respective Alloys[J]. Journal of Physics and Chemistry of Solids, 1965, 26(10): 1585–1604

    Article  Google Scholar 

  14. Fan FJ, Yu B, Wang YX, et al. Colloidal Synthesis of Cu2CdSnSe4 Nanocrystals and Hot-Pressing to Enhance the Tthermoelectric Figure-of-Merit[J]. Journal of the American Chemical Society, 2011, 133(40): 15910–15913

    Article  Google Scholar 

  15. Lee PY, Chen TC, Huang JY, et al. Enhancement of the Thermoelectric Performance in Nano-/Micro-Structured p-type Bi0.4Sb1.6Te3 Fabricated by Mechanical Alloying and Vacuum Hot Pressing[J]. Journal of Alloys and Compounds, 2014, 615: S476–S481

    Article  Google Scholar 

  16. Sakamoto T, Iida T, Matsumoto A, et al. Thermoelectric Characteristics of a Commercialized Mg2Si Source Doped with Al, Bi, Ag, and Cu[J], Journal of Electronic Materials, 2010, 39(9): 1708–1713

    Article  Google Scholar 

  17. Fan XA, Yang JY, Zhu W, et al. Microstructure and Thermoelectric Properties of n-type Bi2Te2.85Se0.15 Prepared by Mechanical Alloying and Plasma Activated Sintering[J]. Journal of Alloys and Compounds, 2006, 420(1): 256–259

    Article  Google Scholar 

  18. Fan J, Liu H, Shi X, et al. Investigation of Thermoelectric Properties of Cu2GaxSn1-xSe3 Diamond-Like Compounds by Hot Pressing and Spark Plasma Sintering[J]. Acta Materialia, 2013, 61(11): 4297–4304

    Article  Google Scholar 

  19. Wan S, Huang X, Qiu P, et al. The Effect of Short Carbon Fibers on the Tthermoelectric and Mechanical Properties of p-type CeFe4Sb12 Skutterudite Composites[J]. Materials & Design, 2015, 67: 379–384

    Article  Google Scholar 

  20. Shelimova LE, Karpinskii OG, Konstantinov PP, et al. Thermoelectric Properties of the Layered Compound GeBi4Te7 Doped with Copper[J]. Inorganic Materials, 2002, 38(8): 790–794

    Article  Google Scholar 

  21. Liu WS, Zhang Q, Lan Y, et al. Thermoelectric Property Studies on Cu-Doped n-type CuxBi2Te2.7Se0.3 Nanocomposites[J]. Advanced Energy Materials, 2011, 1(4): 577–587

    Article  Google Scholar 

  22. Luo L, Wu Y, Li J, et al. Preparation of Nickel-Coated Tungsten Carbide Powders by room Temperature Ultrasonic-Assisted Electroless Plating[J]. Surface and Coatings Technology, 2011, 206(6): 1091–1095

    Article  Google Scholar 

  23. Lotgering FK. Topotactical Reactions with Ferrimagnetic Oxides Having Hexagonal Crystal Structures-I[J]. Journal of Inorganic and Nuclear Chemistry, 1959, 9(2): 113–123

    Article  Google Scholar 

  24. Zhao LD, Zhang BP, Liu WS, et al. Effect of Mixed Grain Sizes on Thermoelectric Performance of Bi2Te3 Compound[J]. Journal of Applied Physics, 2009, 105(2): 023704

    Article  Google Scholar 

  25. Huang Z, Dai X, Yu Y, et al. Enhanced Thermoelectric Properties of p-type Bi0.5Sb1.5Te3 bulk alloys by Electroless Plating with Cu and Annealing[J]. Scripta Materialia, 2016, 118: 19–23

    Article  Google Scholar 

  26. Liu XJ, Wang CP, Ohnuma I, et al. Thermodynamic Assessment of the Phase Diagrams of The Cu-Sb and Sb-Zn Systems[J]. Journal of Phase Equilibria, 2000, 21(5): 432–442

    Article  Google Scholar 

  27. Tang X, Xie W, Li H, et al. Preparation and Thermoelectric Transport Properties of High-Performance p-type Bi2Te3 with Layered Nanostructure[J]. Applied Physics Letters, 2007, 90(1): 12102–12102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyue Huang  (黄中月).

Additional information

Funded by the National Natural Science Foundation of China (No. 51371073)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, X., Huang, Z., Yu, Y. et al. Effects of Electroless Plating with Cu Content on Thermoelectric and Mechanical Properties of p-type Bi0.5Sb1.5Te3 Bulk Alloys. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 797–801 (2018). https://doi.org/10.1007/s11595-018-1896-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1896-7

Key words

Navigation