Enhanced Thermoelectric Performance of Non-equilibrium Synthesized Fe0.4Co3.6Sb12-xGex Skutterudites via Randomly Distributed Multi-scaled Impurity Dots

  • Song Zhang (章嵩)
  • Xuan Hu
  • Meijun Yang (杨梅君)Email author
  • Hong Cheng
  • Rong Tu
  • Lianmeng Zhang
Advanced Materials


The p-type Ge doped Fe0.4Co3.6Sb12-xGex skutterudites with multi-scaled impurity dots (500 nm-2 mm) were successfully prepared by using melt-quenching (MQ) and subsequent spark plasma sintering (SPS) technique. Compared with traditional method, the new technology significantly shortened the processing time from several days to less than 24 hours. The phase of impurity dots was demonstrated to be CoSb through analysis of X-ray diffraction (XRD) and energy-dispersive spectrum (EDS). Impurity dots were induced by Ge substitution of Sb in the non-equilibrium synthesized process. Due to the abandonment of the long reaction of annealing crystallization, a few of Ge atoms would fail to substitute Sb site of skutterudite in this non-equilibrium synthesized process, leading to that the multi-scaled impurity dots randomly distributed in the matrix of skutterudite Fe0.4Co3.6Sb12-xGex. The combination of multi-scaled impurity dots scattering long wavelength heat-carrying phonons and the point defect scattering short and middle wavelength heat-carrying phonons dramatically made the 22.2% reduction of lattice thermal conductivity. As a result, compared with unsubstituted sample of Fe0.4Co3.6Sb12, the maximum ZT value was increased by 30.5%. Thus, the two marked features of this new synthesis process, the shortened preparation time and the enhanced thermoelectric performance, would make a promising commercial application in the future.

Key words

multi-scaled impurity dots Sb site substitution p-type thermoelectric transport properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bell LE. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems[J]. Science., 2008, 321(5895): 1457–1461CrossRefGoogle Scholar
  2. [2]
    Sales BC, Mandrus D and Williams RK. Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials[J]. Science., 1996, 272(5266): 1325–1328CrossRefGoogle Scholar
  3. [3]
    Snyder GJ and Toberer ES. Complex Thermoelectric Materials[J]. Nat. Mater., 2008, 7(2): 105–114CrossRefGoogle Scholar
  4. [4]
    Zhang Q, He J, Zhu TJ, et al. High Figures of Merit and Natural Nanostructures in Mg2Si0.4Sn0.6 Based Thermoelectric Materials[J]. Appl. Phys. Lett., 2008, 93(10): 102109–1–3CrossRefGoogle Scholar
  5. [5]
    Nolas GS, Morelli DT, Tritt TM. Skutterudites: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications[J]. Annu. Rev. Mater. Sci., 1999, 29(1): 89–116CrossRefGoogle Scholar
  6. [6]
    Morelli DT, Meisner GP. Low Temperature Properties of the Filled Skutterudite CeFe4Sb12[J]. J. Appl. Phys., 1995, 77(8): 3777–3780.CrossRefGoogle Scholar
  7. [7]
    Nolas GS, Cohn JL, Slack GA. Effect of Partial Void Filling on the Lattice Thermal Conductivity of Skutterudites[J]. Phys. Rev. B., 1998, 58(1): 164–170CrossRefGoogle Scholar
  8. [8]
    Morelli D, Meisner G, Chen B, et al. Cerium Filling and Doping of Cobalt Triantimonide[J]. Phys. Rev. B., 1997, 56(12): 7376–7383CrossRefGoogle Scholar
  9. [9]
    Nolas GS, Kaeser M, Littleton RT, et al. High Figure of Merit in Partially Filled Ytterbium Skutterudite Materials[J]. Appl. Phys. Lett., 2000, 77 (12): 1855–1857CrossRefGoogle Scholar
  10. [10]
    Zhai PC, Zhao WY, Li Y, et al. Nanostructures and Enhanced Thermoelectric Properties in Ce-filled Skutterudite Bulk Materials[J]. Appl. Phys. Lett., 2006, 89(3): 1–4Google Scholar
  11. [11]
    Chen LD, Kawahara T, Tang XF, et al. Anomalous Barium Filling Fraction and n-type Thermoelectric Performance of BayCo4Sb12[J]. J. Appl. Phys., 2001, 90(4): 1864–1868CrossRefGoogle Scholar
  12. [12]
    Puyet M, Dauscher A, Lenoir B, et al. Beneficial Effect of Ni Substitution on the Thermoelectric Properties in Partially Filled CayCo4-xNixSb12 Skutterudites[J]. J. Appl. Phys., 2005, 97(8): 083712–1–4CrossRefGoogle Scholar
  13. [13]
    Zhao XY, Shi X, Chen LD, et al. Synthesis and Thermoelectric Properties of Sr-filled Skutterudite SryCo4Sb12[J]. J. Appl. Phys., 2006, 99(5): 053711–1–4CrossRefGoogle Scholar
  14. [14]
    Zhao LD, Wu HJ, Hao SQ, et al. All-scale Hierarchical Thermoelectrics: MgTe in PbTe Facilitates Valence Band Convergence and Suppresses Bipolar Thermal Transport for High Performance[J]. Energy Environ. Sci., 2013, 6(11): 3346–3355CrossRefGoogle Scholar
  15. [15]
    Koirala M, Zhao H, Pokharel M, et al. Thermoelectric Property Enhancement by Cu Nanoparticles in Nanostructured FeSb2[J]. Appl. Phys. Lett., 2013, 102(21): 2011–2016CrossRefGoogle Scholar
  16. [16]
    Tan G, Chi H, Liu W, et al. Toward High Thermoelectric Performance p-type FeSb2.2Te0.8 via in situ Formation of InSb Nanoinclusions[J]. J. Mater. Chem. C, 2015, 3(32): 8372–8380CrossRefGoogle Scholar
  17. [17]
    Zebarjadi M, Yang J, Lukas K, et al. Role of Phonon Dispersion in Studying Phonon Mean Free Paths in Skutterudites[J]. J. Appl. Phys., 2012, 112(4): 044305–1–7CrossRefGoogle Scholar
  18. [18]
    Biswas K, He JQ, Blum ID, et al. High-performance Bulk Thermoelectrics with All-scale Hierarchical Architectures[J]. Nature, 2012, 489(7416): 414–418CrossRefGoogle Scholar
  19. [19]
    Shi X, Yang JJ, Salvador JR, et al. Multiple-filled Skutterudites: High Thermoelectric Figure of Merit Through Separately Optimizing Electrical and Thermal Transports[J]. J. Am. Chem. Soc., 2011, 133(20): 7837–7846CrossRefGoogle Scholar
  20. [20]
    Su X, Li H, Yan Y, et al. The Role of Ga in Ba0.30GaxCo4Sb12+x Filled Skutterudites[J]. J. Mater. Chem., 2012, 22(31): 15628–15634CrossRefGoogle Scholar
  21. [21]
    Tan G, Wang S, Tang X, et al. Preparation and Thermoelectric Properties of Ga-substituted p-type Fully Filled Skutterudites CeFe4-xGaxSb12[J]. J. Solid State Chem., 2012, 196(8): 203–208CrossRefGoogle Scholar
  22. [22]
    Liu WS, Zhang BP, Zhao LD, et al. Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb[J]. Chem. Mater., 2008, 20(24): 7526–7531CrossRefGoogle Scholar
  23. [23]
    Wu T, Jiang W, Li X, et al. Effects of Ge Doping on the Thermoelectric Properties of TiCoSb-based p-type Half-Heusler Compounds[J]. J. Alloys Compd., 2009, 467(1): 590–594CrossRefGoogle Scholar
  24. [24]
    Duan B, Zhai P, Liu L, et al. Effects of Se Substitution on the Thermoelectric Performance of n-type Co4Sb11.3Te0.7-xSex Skutterudites[J]. Mater. Res. Bull., 2012, 47(7): 1670–1673CrossRefGoogle Scholar
  25. [25]
    Yu J, Zhao W, Wei P, et al. Effects of Excess Sb on Thermoelectric Properties of Barium and Indium Double-filled Iron-based p-type Skutterudite Materials[J]. J. Electron. Mater., 2012, 41(6): 1414–1420CrossRefGoogle Scholar
  26. [26]
    Duan B, Zhai P, Liu L, et al. Effects of Double Substitution with Ge and Te on Thermoelectric Properties of a Skutterudite Compound[J]. J. Electron. Mater., 2010, 40(5): 932–936CrossRefGoogle Scholar
  27. [27]
    Peng J, Yang J, Zhang T, et al. Preparation and Characterization of Fe Substituted CoSb3 Skutterudite by Mechanical Alloying and Annealing[J]. J. Alloys Compd., 2004, 381(2): 313–316CrossRefGoogle Scholar
  28. [28]
    Holland TJB, Redfern SAT, Street D. Unit Cell Refinement from Powder Diffraction Data: the Use of Regression Diagnostics[J]. Mineral. Mag., 1997, 61(6): 65–77CrossRefGoogle Scholar
  29. [29]
    Su X, Li H, Wang G, et al. Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25-xTex(x = 0.125-0.20) with in situ Nanostructure[J]. Chem. Mater., 2011, 23(10): 2948–2955CrossRefGoogle Scholar
  30. [30]
    Mallik RC, Mueller E, Kim IH. Thermoelectric Properties of Indium Filled and Germanium Doped Co4Sb12 Skutterudites[J]. J. Appl. Phys., 2012, 111(2): 023708–1–8CrossRefGoogle Scholar
  31. [31]
    Yu J, Zhao W, Zhou H et al. Rapid Preparation and Thermoelectric Properties of Ba and In Double-filled p-type Skutterudite Bulk Materials[J]. Scr. Mater., 2013, 68(8): 643–646CrossRefGoogle Scholar
  32. [32]
    Tan G, Zheng Y, Tang X. High Thermoelectric Performance of Nonequilibrium Synthesized CeFe4Sb12 Composite with Multi-scaled Nanostructures[J]. Appl. Phys. Lett., 2013, 103(18): 183904–1–5CrossRefGoogle Scholar
  33. [33]
    Sales BC, Mandrus D, Chakoumakos BC, et al. Filled Skutterudite Antimonides: Electron Crystals and Phonon Glasses[J]. Phys. Rev. B, 1997, 56(23): 15081–15089CrossRefGoogle Scholar
  34. [34]
    Bergman DJ, Levy O. Thermoelectric Properties of a Composite Medium[J]. J. Appl. Phys., 1991, 70(11): 6821–6833CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Song Zhang (章嵩)
    • 1
  • Xuan Hu
    • 1
  • Meijun Yang (杨梅君)
    • 2
    Email author
  • Hong Cheng
    • 1
  • Rong Tu
    • 1
  • Lianmeng Zhang
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.The Center for Materials Research and AnalysisWuhan University of TechnologyWuhanChina

Personalised recommendations