Skip to main content

Advertisement

Log in

Modification of titanium surfaces via surface-initiated atom transfer radical polymerization to graft PEG-RGD polymer brushes to inhibit bacterial adhesion and promote osteoblast cell attachment

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Implant-related infection is one of the key concerns in clinical medicine, so the modification of titanium to inhibit bacterial adhesion and support osteoblast cell attachment is important. In this article, two strategies were used to examine the above effects. First, modification of titanium via surface-initiated atom transfer radical polymerization (ATRP) was performed. The surface of the titanium was activated initially by a silane coupling agent. Well-defined polymer brushes of poly (ethylene glycol) methacrylate were successfully tethered on the silane-coupled titanium surface to form hydration shell to examine the anti- fouling effect. Second, functionalization of the Ti-PEG surface with RGD was performed to examine the anti-bacterial adhesion and osteoblast cell attachment ability. The chemical composition of modified titanium surfaces was characterized by X-ray photoelectron spectroscopy (XPS). Changes in surface hydrophilicity and hydrophobicity were characterized by static water contact angle measurements. Results indicated that PEG-RGD brushes were successfully tethered on the titanium surface. And anti-bacterial adhesion ability and osteoblast cell attachment ability were confirmed by fluorescence microscopy and scanning electron microscopy. Results indicated that PEG can inhibit both bacterial adhesion and osteoblast cell attachment, while PEG-RGD brushes can not only inhibit bacterial adhesion but also promote osteoblast cell attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monti S, Alderighi M, Duce C, et al. Adsorption of Ionic Peptides on Inorganic Supports[J]. J.Phys.Chem.C, 2009, 113(6): 2433–2442

    Article  Google Scholar 

  2. Park J H, Schwartz Z, Olivares-Navarrete R, et al. Enhancement of Surface Wettability via the Modification of Microtextured Titanium Implant Surfaces with Polyelectrolytes[J]. Langmuir, 2011, 27(10): 5976–5985

    Article  Google Scholar 

  3. Wang Y, Liu S, Chen J L, et al. A High Efficiency Approach for a Titanium Surface Antifouling Modification: PEG-o-quinone Linked with Titanium Via Electron Transfer Process[J]. J. Mater. Chem. B, 2014, 2(39): 6758–6766

    Article  Google Scholar 

  4. Ren X, Wu Y, Cheng Y, et al. Fibronectin and Bone Morphogenetic Protein-2-Decorated Poly(OEGMA-r -HEMA) Brushes Promote Osseointegration of Titanium Surfaces[J]. Langmuir, 2011, 27(19): 12069–12073

    Article  Google Scholar 

  5. Kokkonen H, Cassinelli C, Verhoef R, et al. Differentiation of Osteoblasts on Pectin-coated Titanium[J]. Biomacromolecules, 2008, 9(9): 2369–2376

    Article  Google Scholar 

  6. Teshima K, Wagata H, Sakurai K, et al. High-Quality Ultralong Hydroxyapatite Nanowhiskers Grown Directly on Titanium Surfaces by Novel Low-Temperature Flux Coating Method[J]. Cryst. Growth Des., 2012, 12(10): 4890–4896

    Article  Google Scholar 

  7. Neoh K G, Kang E T. Combating Bacterial Colonization on Metals via Polymer Coatings: Relevance to Marine and Medical Applications[J]. Acs Appl. Mater. Interfaces, 2011, 3(8): 2808–2819

    Article  Google Scholar 

  8. Buettner K M, Valentine A M. Bioinorganic Chemistry of Titanium[J]. Chem. Rev., 2011, 112(3): 1863–1881

    Article  Google Scholar 

  9. Müller C, Lüders A, Hoth-Hannig W, et al. Initial Bioadhesion on Dental Materials as a Function of Contact Time, pH, Surface Wettability, and Isoelectric Point[J]. Langmuir, 2009, 26(6): 4136–4141

    Article  Google Scholar 

  10. Falentin-Daudré C, Faure E, Svaldolanero T, et al. Antibacterial Polyelectrolyte Micelles for Coating Stainless Steel[J]. Langmuir, 2012, 28(18): 7233–7241

    Article  Google Scholar 

  11. Lichter J A, Vliet K J V, Rubner M F. Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform[J]. Macromolecules, 2009, 42(22): 8573–8586

    Article  Google Scholar 

  12. Rizzello L, Sorce B, Sabella S, et al. Impact of Nanoscale Topography on Genomics and Proteomics of Adherent Bacteria[J]. Acs Nano, 2011, 5(3): 1865–1876

    Article  Google Scholar 

  13. Groll J, Fiedler J, Engelhard E, et al. A Novel Star PEG-derived Surface Coating for Specific Cell Adhesion[J]. J. Biomed. Mater. Res. A, 2005, 74A(4): 607–617

    Article  Google Scholar 

  14. Lawrence N J, Wells-Kingsbury J M, Ihrig M M, et al. Controlling E. coli Adhesion on High-k Dielectric Bioceramics Films Using Poly(Amino Acid) Multilayers[J]. Langmuir, 2012, 28(9): 4301–4308

    Article  Google Scholar 

  15. Macdonald M L, Rodriguez N M, Shah N J, et al. Characterization of Tunable FGF-2 Releasing Polyelectrolyte Multilayers[J]. Biomacromolecules, 2010, 11(8): 2053–2059

    Article  Google Scholar 

  16. Ariga K, Ji Q, Mcshane M J, et al. Inorganic Nanoarchitectonics for Biological Applications[J]. Chem. Mater., 2011, 24(5): 728–737

    Article  Google Scholar 

  17. Khoo X, Hamilton P, O'Toole G A, et al. Directed Assembly of PEGylated-peptide Coatings for Infection-resistant Titanium Metal[J]. J. Amer. Chem. Soc., 2009, 131(31): 10992–10997

    Article  Google Scholar 

  18. Gao G, Yu K, Kindrachuk J, et al. Antibacterial Surfaces Based on Polymer Brushes: Investigation on the Influence of Brush Properties on Antimicrobial Peptide Immobilization and Antimicrobial Activity[J]. Biomacromolecules, 2011, 12(10): 3715–3727

    Article  Google Scholar 

  19. Ramakrishna S N, Espinosa-Marzal R M, Naik V V, et al. Adhesion and Friction Properties of Polymer Brushes on Rough Surfaces: A Gradient Approach[J]. Langmuir, 2013, 29(49): 15251–15259

    Article  Google Scholar 

  20. Barber T A, Golledge S L, Castner D G, et al. Peptide-modified p(AAm-co-EG/AAc) IPNs Grafted to Bulk Titanium Modulate Osteoblast Behavior in vitro[J]. J. Biomed. Mater. Res. A, 2003, 64A(1): 38–47

    Article  Google Scholar 

  21. El-Ghannam A R, Ducheyne P, Risbud M, et al. Model Surfaces Engineered with Nanoscale Roughness and RGD Tripeptides Promote Osteoblast Activity[J]. J. Biomed. Mater. Res. A, 2004, 68A(4): 615–627

    Article  Google Scholar 

  22. Dolatshahi-Pirouz A, Jensen T, Kraft D C, et al. Fibronectin Adsorption, Cell Adhesion, and Proliferation on Nanostructured Tantalum Surfaces[J]. Acs Nano, 2010, 4(5): 2874–2882

    Article  Google Scholar 

  23. Barbey R, Lavanant L, Paripovic D, et al. Polymer Brushes via Surface-initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications[J]. Chem. Rev., 2009, 109(11): 5437–5527

    Article  Google Scholar 

  24. Telford A M, Neto C, Meagher L. Robust Grafting of PEG Methacrylate Brushes from Polymeric Coatings[J]. Polymer, 2013, 54(21): 5490–5498

    Article  Google Scholar 

  25. Zorn G, Baio J E, Tobias W, et al. Characterization of Poly (Sodium Styrene Sulfonate) Thin Films Grafted from Functionalized Titanium Surfaces[J]. Langmuir, 2011, 27(21): 13104–13112

    Article  Google Scholar 

  26. Tria M C R, Grande C D, PonnapatiR R, et al. Electrochemical Deposition and Surface-initiated RAFT Polymerization: Protein and Cell-resistant PPEGMEMA Polymer Brushes[J]. Biomacromolecules, 2010, 11(12): 3422–3431

    Article  Google Scholar 

  27. Arcot L, Ogaki R, Zhang S, et al. Optimizing the Surface Density of Polyethylene Glycol Chains by Grafting from Binary Solvent Mixtures[J]. Appl. Surf. Sci., 2015, 341: 134–141

    Article  Google Scholar 

  28. Li Y, Kröger M, Liu W K. Endocytosis of PEGylated Nanoparticles Accompanied by Structural and Free Energy Changes of the Grafted Polyethylene Glycol[J]. Biomaterials, 2014, 35(30): 8467–8478

    Article  Google Scholar 

  29. Meyers S R, Grinstaff M W. Biocompatible and Bioactive Surface Modifications for Prolonged In Vivo Efficacy[J]. Chem. Rev., 2011, 112(3): 1615–1632

    Article  Google Scholar 

  30. Rottgermann P J F, Hertrich S, Berts I, et al. Cell Motility on Polyethylene Glycol Block Copolymers Correlates to Fibronectin Surface Adsorption[J]. Macromole. Biosci., 2014, 14(12): 1755–1763

    Article  Google Scholar 

  31. Wu J, Zhao C, Lin W, et al. Binding Characteristics between Polyethylene Glycol (PEG) and Proteins in Aqueous Solution[J]. J. Mater. Chem. B, 2014. 2(20): 2983–2992

    Article  Google Scholar 

  32. Shi Z, Neoh K G, Kang E T, et al. Bacterial Adhesion and Osteoblast Function on Titanium with Surface-grafted Chitosan and Immobilized RGD Peptide[J]. J. Biomed. Mater. Res. A, 2008, 86A(4): 865–872

    Article  Google Scholar 

  33. Wang X, Li S, Yan C, et al. Fabrication of RGD Micro/Nanopattern and Corresponding Study of Stem Cell Differentiation[J]. Nano Letters, 2015, 15(3): 1457–1467

    Article  Google Scholar 

  34. Liu H, Doane T, Cheng Y, et al. Control of Surface Ligand Density on PEGylated Gold Nanoparticles for Optimized Cancer Cell Uptake[J]. Part. Part. Syst. Char., 2015, 32(2): 197–204

    Article  Google Scholar 

  35. Alvarez-Barreto J F, Sikavitsas V I. Improved Mesenchymal Stem Cell Seeding on RGD-Modified Poly (L-lactic acid) Scaffolds using Flow Perfusion[J]. Macromol. Biosci., 2007, 7(5): 579–588

    Article  Google Scholar 

  36. Nguyen M N, Lebarbe T, Zouani O, et al. Impact of RGD Nanopatterns Grafted onto Titanium on Osteoblastic Cell Adhesion[J]. Biomacromolecules, 2012, 13(3): 896–904

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi’an Li  (李志安).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Liu, D., Gong, Y. et al. Modification of titanium surfaces via surface-initiated atom transfer radical polymerization to graft PEG-RGD polymer brushes to inhibit bacterial adhesion and promote osteoblast cell attachment. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 1225–1231 (2017). https://doi.org/10.1007/s11595-017-1735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1735-2

Key words

Navigation