Skip to main content
Log in

Morphology tuning of mono-disperse silver nanoparticles by reaction temperature adjustment

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Mono-disperse silver nanoparticles with tunable morphologies have been fabricated by reducing AgNO3 in the presence of N-dimethylformamide (DMF) and larger molecular weight poly (vinylpyrrolidone) (PVP). By adjusting the reaction temperature, the conversion of the morphology can be easily and effectively controlled. The crystal structures and growth mechanism of mono-disperse silver nanoparticles were studied by using TEM, HR-TEM, FFT, XRD and UV-Vis spectra data. The results show that the morphologies of nanoparticles with spherical shape can be adjusted to a truncated triangle/hexagon along with the change of reaction temperature from 80 to 120 °C. It is found that the shape transformation from sphere to truncated triangle is caused by the difference in surface energy and the selective adsorption of PVP on silver atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D Li, L J Pan, S. Li, et al. Controlled Preparation of Uniform TiO2-Catalyzed Silver Nanoparticle Films for Surface-Enhanced Raman Scattering[J]. J. Phys. Chem. C, 2013, 117(13): 6 861–6 871

    Article  Google Scholar 

  2. S Tokonami, N Morita, K Takasaki, et al. Novel Synthesis, Structure, and Oxidation Catalysis of Ag/Au Bimetallic Nanoparticles[J]. J. Phys. Chem. C, 2010, 114(23): 10 336–10 341

    Article  Google Scholar 

  3. K S Chen, X R Feng, R Hu, et al. Effect of Ag Nanoparticle Size on the Photoelectrochemical Properties of Ag Decorated TiO2 Nanotube Arrays[J]. J. Alloys Compd., 2013, 554: 72–79

    Article  Google Scholar 

  4. F Liu, J M Nunzi. Enhanced Organic Light Emitting Diode and Solar Cell Performances Using Silver Nano-clusters[J]. Org. Electronics, 2012, 13: 1 623–1 632

    Article  Google Scholar 

  5. K L Kelly, E Coronado, L L Zhao, et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment [J]. J. Phys. Chem. B, 2003, 107: 668–677

    Article  Google Scholar 

  6. M Pelton, J Aizpurua, G Bryant. Metal-nanoparticle Plasmonics[J]. Laser & Photon Rev., 2008. 2(3): 136–159

    Article  Google Scholar 

  7. J J Mock, M Barbic, D R Smith. et al. Shape Effects in Plasmon Resonance of Individual Colloidal Silver Nanoparticles[J]. J. Chem. Phys., 2002, 116(15): 6 755–6 759

    Article  Google Scholar 

  8. Y Wang, D H Wan, S F Xie, et al. Synthesis of Silver Octahedra with Controlled Sizes and Optical Properties via Seed-Mediated Growth[J]. ACS Nano., 2013, 7(5): 4 586–4 594

    Article  Google Scholar 

  9. S J Chang, K Chen, H Qing, et al. Evidence for the Growth Mechanisms of Silver Nanocubes and Nanowires[J]. J.phys.Chem.C, 2011, 115(16): 7 979–7 982

    Article  Google Scholar 

  10. B Tang, S P Xu, J An, et al. Photoinduced Shape Conversion and Reconstruction of Silver Nanoprisms[J]. J. Phys. Chem. C, 2009, 113: 7 025–7 030

    Article  Google Scholar 

  11. H B Mao, J Y Feng, X Ma, et al. One-dimensional Silver Nanowires Synthesized by Self-seeding Polyol process [J]. J.Nanopart. Res., 2012, 14: 887–890

    Article  Google Scholar 

  12. X He, X J Zhao. Solvothermal Synthesis and Formation Mechanism of Chain-like Triangular Silver Nanoplate Assemblies: Application to Metal-enhanced Fluorescence (MEF) [J]. Appl Surf. Sci., 2009, 255: 7 361–7 368

    Article  Google Scholar 

  13. X He, X J Zhao, Y X Chen. Synthesis and Characterization of Silver Nanowires with Zigzag Morphology in N, N-dimethylformamide [J]. J. Solid State Chem., 2007, 180: 2 262–2 267

    Article  Google Scholar 

  14. P S Isabel, M L Luis, N. N-Dimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis[J]. Adv. Funct. Mater., 2009, 19: 679–688

    Article  Google Scholar 

  15. Y Gao, P Jiang, et al. Studies on Silver Nanodecahedrons Synthesized by PVP-assisted N, N-dimethylformamide (DMF) Reduction[J]. J. Cryst Growth, 2006, 289: 376–380

    Article  Google Scholar 

  16. P S Isabel, M L Luis. Synthesis of Silver Nanoprisms in DMF [J]. Nano Lett., 2002, 2(8): 903–905

    Article  Google Scholar 

  17. P S Isabel, M L Luis. Formation and Stabilization of Silver Nanoparticles through Reduction by N, N-Dimethylformamide[J]. Langmuir, 1999, 15: 948–951

    Article  Google Scholar 

  18. P Y Silvert, R H Urbinab, K T Elhsissena. Preparation of Colloidal Silver Dispersions by the Polyol Process, Part 2[J]. J. Mater. Chem., 1997, 7(2): 293–299

    Article  Google Scholar 

  19. P S Isabel, M L Luis. Formation of PVP-Protected Metal Nanoparticles in DMF[J]. Langmuir, 2002, 18: 2 888–2 894

    Article  Google Scholar 

  20. M Tsuji, X L Tang, M Mika, et al. Shape Evolution of Flag Types of Silver Nanostructures from Nanorod Seeds in PVP-Assisted DMF Solution[J]. Cryst. Growth Des., 2010, 10(12): 5 238–524

    Article  Google Scholar 

  21. Y J Bae, N H Kim, M J Kim, et al. Anisotropic Assembly of Ag Nanoprisms[J]. J. Am. Chem. Soc., 2008, 130: 5 432–5 433

    Article  Google Scholar 

  22. X M Zhu, X J Zhao, Z Y Ning, et al. Effect of Polyvinylpyrrolidone Molecular Weight on the Silver Morphology Synthesized by N, N-dimethylformamide Reduction[J]. Key Eng. Mater., 2012, 509: 245–252

    Article  Google Scholar 

  23. S H Chen, L C David. Synthesis and Characterization of Truncated Triangular Silver Nanoplates[J]. Nano Lett., 2002,2(9): 1 003–1 007

    Article  Google Scholar 

  24. B J Wiley, S H Im, Z Y Li, et al. Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis[J]. J. Phys. Chem. B, 2006, 110(32): 15 666–15 675

    Article  Google Scholar 

  25. C Noguez. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment [J]. J. Phys. Chem. C, 2007, 111: 3 806–3 819

    Article  Google Scholar 

  26. C Noguez. Optical Properties of Isolated and Supported Metal Nanoparticles[J]. Opt. Mater., 2005, 27: 1 204–1 211

    Article  Google Scholar 

  27. S Gabriella, C Mirkin. Rapid Thermal Synthesis of Silver Nanoprisms with Chemical Tailorable Thickness[J]. Adv. Mater., 2005, 17(4):412–415

    Article  Google Scholar 

  28. Tang B, Xu S P, Hou X L, et al. Shape Evolution of Silver Nanoplates Through Heating and Photoinduction[J]. Appl. Mater. Interface, 2013, 5: 646–653

    Article  Google Scholar 

  29. Y G Sun, B Mayers, Y N Xia. Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process [J]. Nano Lett., 2003, 3(5): 675–679

    Article  Google Scholar 

  30. B Tang, J An, X L Zheng, et al. Silver Nanodisk with Tunable Size by Heat Aging[J]. J.Phys.Chem. C, 2008, 112: 18 361–18 367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujian Zhao  (赵修建).

Additional information

Funded by National Natural Science Foundation of China(NSFC) (Nos.51032005, 51372180), National Basic Research Program of China (No.2009CB939704) and the Fundamental Research Funds for the Central Universities (Wuhan University of Technology)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Ma, X., Chang, H. et al. Morphology tuning of mono-disperse silver nanoparticles by reaction temperature adjustment. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 40–43 (2014). https://doi.org/10.1007/s11595-014-0864-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-014-0864-0

Key words

Navigation