Stability of titanium-aluminium nitride (Ti2AlN) at high pressure and high temperatures

  • Pei An (安佩)
  • Zhilei He
  • Jiaqian Qin
  • Ziyang Li
  • Yongjun Li
  • Zili Kou (寇自力)
  • Duanwei He


The stability of Ti2AlN at high pressure of 5 GPa and different temperatures of 700–1 600 °C was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS). Ti2AlN was found to be stable at temperatures as high as 1 400 °C under 5 GPa for 20 min, and was proved that it held better structure stability than Ti2AlC under 5 GPa through comparative experiments of Ti2AlN and Ti2AlC (representative compounds of M 2 AX phases (211 phase)). The reaction process at high pressure had some difference from that at ambient pressure/vacuum, and Ti2AlN directly decomposed to TiN and TiAl at 5 GPa and 1 500 °C for 20 min. Moreover, the mechanism of phase segregation was discussed. In addition, the behavior of Ti2AlN contacting with Zr at high pressure and high temperature (HPHT) was also studied.

Key words

Ti2AlN high pressure and high temperature stability X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H Nowotny. New Compounds with Eulytine Structure: Crystal Chemistry and Luminescence[J]. Prog. Solid. State. Chem., 1970, 2: 27–30CrossRefGoogle Scholar
  2. [2]
    W Jeitschko, H Nowotny. Die Kristallstructur von Ti3SiC2-Ein Neuer Komplxcarbid-Typ[J]. Monatsh. fur Chem., 1967, 98: 329–37CrossRefGoogle Scholar
  3. [3]
    H Wolfsgruber, H Nowotny, F Benesovsky. Die Kristallstuktur von Ti3GeC2[J]. Monatsh. fur Chem., 1967, 98: 2 401–2 405Google Scholar
  4. [4]
    M A Pietzka, C Schuster. Summary of Constitutional Data on the Aluminum-Carbon-Titanium System[J]. J. Phase Equilib., 1994, 15: 392–400CrossRefGoogle Scholar
  5. [5]
    S Dubois, T Cabioc’h, P Chartier, et al. A New Ternary Nanolaminate Carbide: Ti3SnC2[J]. J. Am. Ceram. Soc., 2007, 90: 2 642–2 644CrossRefGoogle Scholar
  6. [6]
    J Etzkorn, M Ade, H Hillebrecht. Ta3AlC2 and Ta4AlC3 — Single-Crystal Investigations of Two New Ternary Carbides of Tantalum Synthesized by the Molten Metal Technique[J]. Inorg. Chem., 2007, 46: 1 410–1 418Google Scholar
  7. [7]
    Y C Zhou, F L Meng, J Zhang. New MAX-Phase Compounds in the V-Cr-Al-C System[J]. J. Am. Ceram. Soc., 2008, 91: 1 357–1 360Google Scholar
  8. [8]
    C J Rawn, M W Barsoum, T El-Raghy, et al. Structure of Ti4AlN3-A Layered M n+1 AX n Nitrid[J]. Mater. Res. Bull., 2000, 35: 1 785–1 796CrossRefGoogle Scholar
  9. [9]
    A T Procipio, M W Barsoum, El-Raghy T, et al. Characterization of Ti4AlN3[J]. Metall. Mater. Trans. A, 2000, 31: 333–337CrossRefGoogle Scholar
  10. [10]
    B Manoun, S K Saxena, T El-Raghy, et al. High-Pressure X-Ray Diffraction Study of Ta4AlC3[J]. Appl. Phys. Lett., 2006, 88:201 902/1–201 902/3CrossRefGoogle Scholar
  11. [11]
    Z Lin, M Zhuo, Y Zhou, et al. Structural Characterization of a New Layered-Ternary Ta4AlC3 Ceramic[J]. J. Mater. Res., 2006, 21: 2 587–2 592Google Scholar
  12. [12]
    C Hu, Z Lin, L He, et al. Physical and Mechanical Properties of Bulk Ta4AlC3 Ceramic Prepared by an In-Situ Reaction Synthesis/Hot-Pressing Method[J]. J. Am. Ceram. Soc., 2007, 90(8):2 542–2 548Google Scholar
  13. [13]
    P Eklund, J-P Palmquist, J Höwing, et al. Ta4AlC3: Phase Determination, Polymorphism and Deformation[J]. Acta Mater., 2007, 55: 4 723–4 729CrossRefGoogle Scholar
  14. [14]
    J-P Palmquist, S Li, P O Å Persson, et al. M n+1 AX n Phases in the Ti-Si-C System Studied by Thin-Film Synthesis and Ab Initio Calculations[J]. Phys. Rev. B, 2004, 70: 165 401/1–165 401/13CrossRefGoogle Scholar
  15. [15]
    H Högberg, L Hultman, J Emmerlich, et al. Growth and Characterization of MAX-Phase Thin Films[J]. Surf. Coat. Technol., 2005, 193: 6–10CrossRefGoogle Scholar
  16. [16]
    P Eklund, A Murugaiah, J Emmerlich, et al. Homoepitaxial Growth of Ti-Si-C MAX-Phase Thin Films on Bulk Ti3SiC2 Substrates[J]. J. Cryst. Growth, 2007, 304: 264–269CrossRefGoogle Scholar
  17. [17]
    H Högberg, P Eklund, J Emmerlich, et al. Rapi d Communications: Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-Phase Thin Films Grown by Magnetron Sputtering[J]. J. Mater. Res., 2005, 20: 779–782CrossRefGoogle Scholar
  18. [18]
    C Hu, F Li, J Zhang, et al. Nb4AlC3: A New Compound Belonging to the MAX Phases[J]. Scripta Mater., 2007, 57: 893–896CrossRefGoogle Scholar
  19. [19]
    C F Hu, J Zhang, J M Wang, et al. Crystal Structure of V4AlC3: A New Layered Ternary Carbide[J]. J. Am. Ceram. Soc., 2008, 91: 636–639CrossRefGoogle Scholar
  20. [20]
    W Jeitschko, H Nowotny, F Benesovsky. Kohlenstoffhaltige ternäre Verbindungen (H-Phase)[J]. Monatsch. Chem., 1963, 94: 672–676CrossRefGoogle Scholar
  21. [21]
    J C Schuster, J Bauer. The Ternary System Titanium-Aluminium-Nitrogen[J]. J. Solid. State. Chem., 1984, 53: 260–265CrossRefGoogle Scholar
  22. [22]
    M W Barsoum, M Ali, T El-Raghy. Processing and Characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5[J]. Metall. Mater. Trans. A, 2000, 31A: 1 857–1 865Google Scholar
  23. [23]
    M W Barsoum. The M n+1 AX n Phases: A New Class of Solids; Thermodynamically Stable Nanolaminates[J]. Prog. Solid. State. Chem., 2000, 28: 201–281CrossRefGoogle Scholar
  24. [24]
    J L Jordan, T Sekine, T Kobayashi, et al. High Pressure Behavior of Titanium-Silicon Carbide (Ti3SiC2)[J]. J. Appl. Phys., 2003, 93: 9 639–9 643CrossRefGoogle Scholar
  25. [25]
    B Manoun, H P Liermann, R Gulve, et al. Compression of Ti3Si0.5Ge0.5C2 to 53 GPa[J]. Appl. Phys. Lett., 2004, 84: 2 799–2 801CrossRefGoogle Scholar
  26. [26]
    B Manoun, S K Saxena, H P Liermann, et al. Compression of Zr2InC to 52 GPa[J]. Appl. Phys. Lett., 2004, 85: 1 514–1 516CrossRefGoogle Scholar
  27. [27]
    B Manoun, S K Saxena, M W Barsoum. High Pressure Study of Ti4AlN3 to 55 GPa[J]. Appl. Phys. Lett., 2005, 86:101 906/1–101 906/3CrossRefGoogle Scholar
  28. [28]
    R S Kumar, S Rekhi, A L Cornelius, et al. Compressibility of Nb2AsC to 41 GPa[J]. Appl. Phys. Lett., 2005, 86:111 904/1–111 904/3Google Scholar
  29. [29]
    B Manoun, R P Gulve, S K Saxena, et al. Compression Behavior of M2AlC (M=Ti, V, Cr, Nb, and Ta) Phases to above 50 GPa[J]. Phys. Rev. B, 2006, 73: 024 110/1–024 110/7CrossRefGoogle Scholar
  30. [30]
    B Manoun, F X Zhang, S K Saxena, et al. X-Ray High-Pressure Study of Ti2AlN and Ti2AlC[J]. J. Phys. Chem. Solids., 2006, 67: 2 091–2 094CrossRefGoogle Scholar
  31. [31]
    B Manoun, H Yang, S K Saxena, et al. Infrared Spectrum and Compressibility of Ti3GeC2 to 51 GPa[J]. J. Alloys. Comp., 2007, 433: 265–268CrossRefGoogle Scholar
  32. [32]
    M Radovic, M W Barsoum, A Ganguly, et al. On the Elastic Properties and Mechanical Damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C2 and Ti2AlC, in the 300–1 573 K Temperature Range[J]. Acta. Mater., 2006, 54: 2 757–2 767CrossRefGoogle Scholar
  33. [33]
    J Qin, D He, C Chen, et al. Phase Segregation of Titanium-Aluminium Carbide (Ti2AlC) at High Pressure and High Temperature [J]. J. Alloy. Compd., 2008, 462: L24–L 27CrossRefGoogle Scholar
  34. [34]
    J Qin, D He, L Lei, et al. Differential Thermal Analysis Study of Phase Segregation of Ti2AlC under High Pressure and High Temperature [J]. J. Alloy. Compd., 2009, 476: L8–L10CrossRefGoogle Scholar
  35. [35]
    L Fang, D He, C Chen, et al. Effect of Precompression on Pressure-Transmitting Efficiency of Pyrophyllite Gaskets[J]. High Pressure Res., 2007, 27: 367–374CrossRefGoogle Scholar
  36. [36]
    P W Mirwald, I C Getting, G C Kennedy. Low Fristion Cell for Piston Cylinder High-Pressure Apparatus[J]. J. Geophys. Res., 1975, 80: 1 519–1 525CrossRefGoogle Scholar
  37. [37]
    X H Wang, Y C Zhou. Stability and Selective Oxidation of Aluminum in Nano-Laminate Ti3AlC2 upon Heating in Ar[J]. Chem. Mater., 2003, 15: 3 716–3 720Google Scholar
  38. [38]
    J Emmerlich, D Music, P Ekund, et al. Thermal Stability of Ti3SiC2 Thin Films[J]. Acta. Mater., 2007, 55: 1 479–1 488CrossRefGoogle Scholar
  39. [39]
    M W Barsoum, T El-Raghy, L Farber, et al. The Topotaxial Transformation of Ti3SiC2 to Form a Partially Ordered Cubic TiC0.67 Phase by the Diffusion of Si into Molten Cryolite[J]. J. Electro. Soc., 1999, 146: 3 919–3 923Google Scholar
  40. [40]
    J Zhang, J Y Wang, Y C Zhou. Structure Stability of Ti3AlC2 in Cu and Microstructure Evolution of Cu-Ti3AlC2 Composites[J]. Acta. Mater., 2007, 55: 4 381–4 390Google Scholar
  41. [41]
    J X Chen, Y C Zhou, H B Zhang, et al. Thermal Stability of Ti3AlC2/Al2O3 Composites in High Vacuum[J]. Mater. Chem. Phys., 2007, 104(1): 109–122CrossRefGoogle Scholar
  42. [42]
    G Hug, M Jaouen, M W Barsoum. X-Ray Absorption Spectroscopy, EELS, and Full-Potential Augmented Plane Wave Study of the Electronic Structure of Ti2AlC, Ti2AlN, Nb2AlC, and (Ti0.5Nb0.5)2AlC[J]. Phys. Revs. B, 2005, 71: 024 105/1–024 105/12Google Scholar
  43. [43]
    Y Zhou, Z Sun. Electronic and Bonding Properties of Layered Machinable Ti2AlC and Ti2AlN Ceramics[J]. Phys. Revs. B, 2000, 61: 12 570–12 573Google Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pei An (安佩)
    • 1
  • Zhilei He
    • 2
  • Jiaqian Qin
    • 1
  • Ziyang Li
    • 1
  • Yongjun Li
    • 1
  • Zili Kou (寇自力)
    • 1
  • Duanwei He
    • 1
  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.College of Materials Science and EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations