Advertisement

Drone-assisted deliveries: new formulations for the flying sidekick traveling salesman problem

  • Mauro Dell’Amico
  • Roberto Montemanni
  • Stefano NovellaniEmail author
Original Paper

Abstract

In this paper we consider a problem related to deliveries assisted by an unmanned aerial vehicle, so-called drone. In particular we consider the Flying Sidekick Traveling Salesman Problem, in which a truck and a drone cooperate to deliver parcels to customers minimizing the completion time. In the following we improve the formulation found in the related literature. We propose three-indexed and two-indexed formulations and a set of inequalities that can be implemented in a branch-and-cut fashion. The methods that we propose are able to find the optimal solution for most of the literature instances. Moreover, we consider two versions of the problem: one in which the drone is allowed to wait at the customers, as in the literature, and one in which waiting is allowed only in flying mode. The solving methodologies are adapted to both versions and a comparison between the two is provided.

Keywords

Aerial drones Routing Branch-and-cut Parcel deliveries Formulations 

Notes

References

  1. 1.
    7-Eleven, Flirtey make first FAA-approved drone delivery to home. (2016). https://www.gpsworld.com/7-eleven-flirtey-make-first-faa-approved-drone-delivery-to-home/. Accessed 22 Mar 2019
  2. 2.
    Aerial Id Card renewal: UAE to use drones for government services (2014). https://www.reuters.com/article/us-emirates-drones/aerial-id-card-renewal-uae-to-use-drones-for-government-services-idUSBREA1906E20140210. Accessed 22 Mar 2019
  3. 3.
    Alibaba’s drones deliver packages to islands. http://www.chinadaily.com.cn/business/2017-11/07/content_34230012.htm. Accessed 22 Mar 2019
  4. 4.
  5. 5.
  6. 6.
    The defibrillator drone that can beat ambulance times. https://www.bbc.com/news/av/technology-40360164/the-defibrillator-drone-that-can-beat-ambulance-times. Accessed 22 Mar 2019
  7. 7.
    Dpdgroup drone delivers parcels using regular commercial line (2016). https://www.suasnews.com/2016/12/dpdgroup-drone-delivers-parcels-using-regular-commercial-line/. Accessed 22 Mar 2019
  8. 8.
    Drone delivery: DHL, ’parcelcopter’ flies to German isle (2014). https://www.reuters.com/article/us-deutsche-post-drones/drone-delivery-dhl-parcelcopter-flies-to-german-isle-idUSKCN0HJ1ED20140924. Accessed 22 Mar 2019
  9. 9.
    How UPS and Zipline are using drones to save lives in remote Rwandan clinics. https://www.freeenterprise.com/how-ups-and-zipline-are-using-drones-to-save-lives/. Accessed 22 Mar 2019
  10. 10.
    JD.com to build 150 drone launch facilities in China by 2020 (2017). https://aircargoworld.com/allposts/jd-com-to-build-150-drone-launch-facilities-in-china-by-2020-video/. Accessed 22 Mar 2019
  11. 11.
    JD.com drone delivery program takes flight in rural China (2016). http://corporate.jd.com/whatIsNewDetail?contentCode=6IhXLeeSAFLjLLlyuZatDA. Accessed 22 Mar 2019
  12. 12.
    JD’s first large-scale UAV debuts in Shaanxi (2018). http://www.chinadaily.com.cn/a/201811/20/WS5bf3af9ca310eff303289e31.html. Accessed 22 Mar 2019
  13. 13.
    Parcelcopter: HL’s drone (2018). https://discover.dhl.com/business/business-ethics/parcelcopter-drone-technology. Accessed 22 Mar 2019
  14. 14.
    UPS drivers may tag team deliveries with drones. https://money.cnn.com/2017/02/21/technology/ups-drone-delivery/index.html. Accessed 22 Mar 2019
  15. 15.
    UPS tests residential delivery via drone. https://www.youtube.com/watch?v=xx9_6OyjJrQ. Accessed 22 Mar 2019
  16. 16.
  17. 17.
    Wing - transforming the way goods are transported. https://x.company/projects/wing/. Accessed 22 Mar 2019
  18. 18.
    Zookal will deliver textbooks using drones in Australia next year. https://edition.cnn.com/2013/10/18/tech/innovation/zookal-will-deliver-textbooks-using-drones/index.html. Accessed 22 Mar 2019
  19. 19.
    Agatz, N., Bouman, P., Schmidt, M.: Optimization approaches for the traveling salesman problem with drone. Transp. Sci. 52(4), 965–981 (2018) CrossRefGoogle Scholar
  20. 20.
    Boone, N., Sathyan, A., Cohen, K.: Enhanced approaches to solving the multiple traveling salesman problem. In: Proceedings of the AIAA Infotech @ Aerospace Conference, p. 0889 (2015).  https://doi.org/10.2514/6.2015-0889
  21. 21.
    Bortoff, S.A.: Path planning for uavs. In: Proceedings of the 2000, American Control Conference, IEEE, vol. 1, no. 6, pp. 364–368 (2000)Google Scholar
  22. 22.
    Bouman, P., Agatz, N., Schmidt, M.: Dynamic programming approaches for the traveling salesman problem with drone. Networks 72(4), 528–542 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Boysen, N., Briskorn, D., Fedtke, S., Schwerdfeger, S.: Drone delivery fro trucks: drone scheduling for given truck routes. Networks 72(4), 506–527 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Campbell, J.F., Corberán, Á., Plana, I., Sanchis, J.M.: Drone arc routing problems. Networks 72(4), 543–559 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chao, I.M.: A tabu search method for the truck and trailer routing problem. Comput. Oper. Res. 29(1), 33–51 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Current, J.R., Schilling, D.A.: The covering salesman problem. Transp. Sci. 23(3), 208–213 (1989)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Daknama, R., Kraus, E.: Vehicle routing with drones. arXiv preprint arXiv:1705.06431 (2017)
  28. 28.
    Dorling, K., Heinrichs, J., Messier, G.G., Magierowski, S.: Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 70–85 (2017)CrossRefGoogle Scholar
  29. 29.
    Drexl, M.: Synchronization in vehicle routing—a survey of vrps with multiple synchronization constraints. Transp. Sci. 46(3), 297–316 (2012)CrossRefGoogle Scholar
  30. 30.
    Ferrandez, S.M., Harbison, T., Weber, T., Sturges, R., Rich, R.: Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm. J. Ind. Eng. Manag. 9(2), 374 (2016)Google Scholar
  31. 31.
    Ha, Q.M., Deville, Y., Pham, Q.D., Hà, M.H.: Heuristic methods for the traveling salesman problem with drone. Comput. Sci. arXiv:1509.08764v1 (2015)
  32. 32.
    Kashuba, S., Novikov, V., Lysenko, O., Alekseeva, I.: Optimization of uav path for wireless sensor network data gathering. In: 2015 IEEE International Conference on Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), IEEE, pp. 280–283 (2015).  https://doi.org/10.1109/APUAVD.2015.7346621
  33. 33.
    Lin, C.: A vehicle routing problem with pickup and delivery time windows, and coordination of transportable resources. Comput. Oper. Res. 38(11), 1596–1609 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mbiadou Saleu, R.G., Deroussi, L., Feillet, D., Grangeon, N., Quilliot, A.: An iterative two-step heuristic for the parallel drone scheduling traveling salesman problem. Networks 72(4), 459–474 (2018)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM (JACM) 7(4), 326–329 (1960)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Murray, C.C., Chu, A.G.: The flying sidekick traveling salesman problem: optimization of drone-assisted parcel delivery. Transp. Res. Part C Emerg. Technol. 54, 86–109 (2015)CrossRefGoogle Scholar
  37. 37.
    O’Rourke, K.P., Bailey, T.G., Hill, R., Carlton, W.B.: Dynamic routing of unmanned aerial vehicles using reactive tabu search. Tech. rep, Air Force Inst. of Tech. Wright-Patterson AFB Oh (1999)Google Scholar
  38. 38.
    Otto, A., Agatz, N., Campbell, J., Golden, B., Pesch, E.: Optimization approaches for civil applications of unmanned aerial vehicles (uavs) or aerial drones: a survey. Networks 72(4), 411–458 (2018)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Poikonen, S., Wang, X., Golden, B.: The vehicle routing problem with drones: extended models and connections. Networks 70(1), 34–43 (2017)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ponza, A.: Optimization of drone-assisted parcel delivery. Master’s Thesis (2016)Google Scholar
  41. 41.
    Pugliese, L.D.P., Guerriero, F.: Last-mile deliveries by using drones and classical vehicles. In: International Conference on Optimization and Decision Science, pp. 557–565. Springer, Berlin (2017).  https://doi.org/10.1007/978-3-319-67308-0_56 Google Scholar
  42. 42.
    Pugliese, L.D.P., Guerriero, F., Zorbas, D., Razafindralambo, T.: Modelling the mobile target covering problem using flying drones. Optim. Lett. 10(5), 1021–1052 (2016)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Richards, A., Bellingham, J., Tillerson, M., How, J.: Coordination and control of multiple uavs. In: AIAA Guidance, Navigation, and Control Conference, Monterey, CA (2002).  https://doi.org/10.2514/6.2002-4588
  44. 44.
    Roberge, V., Tarbouchi, M., Labonté, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time uav path planning. IEEE Trans. Ind. Inf. 9(1), 132–141 (2013).  https://doi.org/10.1109/TII.2012.2198665 CrossRefGoogle Scholar
  45. 45.
    Ryan, J.L.: Embedding a reactive tabu search heuristic in unmanned aerial vehicle simulations. Tech. rep, Air Force Inst. of Tech. Wright-Patterson AFB oh School of Engineering (1998)Google Scholar
  46. 46.
    Ryan, J.L., Bailey, T.G., Moore, J.T., Carlton, W.B.: Reactive tabu search in unmanned aerial reconnaissance simulations. In: Proceedings of the 30th Conference on Winter Simulation, IEEE Computer Society Press, pp. 873–880 (1998).  https://doi.org/10.1109/WSC.1998.745084
  47. 47.
    Savuran, H., Karakaya, M.: Route optimization method for unmanned air vehicle launched from a carrier. Lect. Notes Softw. Eng. 3(4), 279 (2015)CrossRefGoogle Scholar
  48. 48.
    Scott, J., Scott, C.: Drone delivery models for healthcare. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017).  https://doi.org/10.24251/HICSS.2017.399
  49. 49.
    Shang, B., Wu, C., Hu, Y., Yang, J.: An algorithm of visual reconnaissance path planning for uavs in complex spaces. J. Comput. Inf. Syst. 8(1), 1–8 (2014)Google Scholar
  50. 50.
    Shavarani, S.M., Nejad, M.G., Rismanchian, F., Izbirak, G.: Application of hierarchical facility location problem for optimization of a drone delivery system: a case study of amazon prime air in the city of San Francisco. Int. J. Adv. Manuf. Technol. 95(9–12), 3141–3153 (2018) CrossRefGoogle Scholar
  51. 51.
    Shuttleworth, R., Golden, B.L., Smith, S., Wasil, E.: Advances in meter reading: Heuristic solution of the close enough traveling salesman problem over a street network. In: The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 487–501. Golden B., Raghavan S., Wasil E. (eds.) vol. 43. Springer, Berlin (2008) Google Scholar
  52. 52.
    Sisson, M.R.: Applying tabu heuristic to wind influenced, minimum risk and maximum expected coverage routes. Tech. rep, Air Force Inst. of Tech. Wright-Patterson AFB Oh School of Engineering (1997)Google Scholar
  53. 53.
    Tseng, C.M., Chau, C.K., Elbassioni, K., Khonji, M.: Flight tour planning with recharging optimization for battery-operated autonomous drones. arXiv preprint arXiv:1703.10049 (2017)
  54. 54.
    Ulmer, M.W., Thomas, B.W.: Same-day delivery with heterogeneous fleets of drones and vehicles. Networks 72(4), 475–505 (2018)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Wang, X., Poikonen, S., Golden, B.: The vehicle routing problem with drones: several worst-case results. Optim. Lett. 11(4), 679–697 (2017)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Yurek, E.E., Ozmutlu, H.C.: A decomposition-based iterative optimization algorithm for traveling salesman problem with drone. Transp. Res. Part C Emerg. Technol. 91, 249–262 (2018)CrossRefGoogle Scholar
  57. 57.
    Zheng, C., Li, L., Xu, F., Sun, F., Ding, M.: Evolutionary route planner for unmanned air vehicles. IEEE Trans. Robot. 21(4), 609–620 (2005)CrossRefGoogle Scholar
  58. 58.
    Zorbas, D., Razafindralambo, T., Guerriero, F., et al.: Energy efficient mobile target tracking using flying drones. Proc. Comput. Sci. 19, 80–87 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze e Metodi dell’Ingegneria (DISMI)Università di Modena e Reggio Emilia (UNIMORE)Reggio EmiliaItaly

Personalised recommendations