Advertisement

A mathematical programming formulation for the Hartree–Fock problem on open-shell systems

  • Leo LibertiEmail author
  • Carlile Lavor
  • Nelson Maculan
Original Paper
  • 14 Downloads

Abstract

The solutions of the time-independent Schrödinger equation provide a quantum description of the stationary state of electrons in atoms and molecules. The Hartree–Fock problem consists in expressing these solutions by means of finite dimensional approximations thereof. These are themselves linear combinations of an existing linearly independent set; best approximations are obtained when a certain energy function is minimized. In Lavor et al. (Europhys Lett 5(77):50006p1–50006p5, 2007) we proposed a new mathematical programming (MP) approach which enhanced the likelihood of attaining globally optimal approximations, limited to closed-shell atomic systems. In this paper, we discuss an extension to open-shell systems: this is nontrivial as it requires the expression of a rank constraint within an MP formulation. We achieve this by explicitly modelling eigenvalues and requiring them to be nonzero. Although our approach might not necessarily scale well, we show it works on two open-shell systems (lithium and boron).

Keywords

Quantum chemistry Mathematical programming Linear independence Rank constraint 

Notes

Acknowledgements

The authors are thankful to Brazilian research agencies FAPERJ, FAPESP, CAPES and CNPq for financial support, and to M.A. Chaer Nascimento and T.M. Cardozo for useful discussions leading to the formulation of Eq. (4). The first author (LL) has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 764759 “MINOA”.

References

  1. 1.
    Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Methods Softw. 24(4), 597–634 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953)zbMATHGoogle Scholar
  3. 3.
    Cardozo, T., Chaer Nascimento, M.: Private communication (2012)Google Scholar
  4. 4.
    COIN-OR: Introduction to IPOPT: A tutorial for downloading, installing, and using IPOPT (2006)Google Scholar
  5. 5.
    Fletcher, R., Leyffer, S.: User manual for FILTER. Technical Report, University of Dundee, London (1999)Google Scholar
  6. 6.
    Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)Google Scholar
  7. 7.
    Gill, P.: User’s Guide for SNOPT 5.3. Systems Optimization Laboratory. Department of EESOR, Stanford University, California (1999)Google Scholar
  8. 8.
    Hollauer, E., Nascimento, M.: A generalized multistructural wave function. J. Chem. Phys. 99, 1207 (1993)CrossRefGoogle Scholar
  9. 9.
    Janes, P.: Rigorous numerical approaches in electronic structure theory. Ph.D. Thesis, Australian National University (2011)Google Scholar
  10. 10.
    Janes, P., Rendell, A.: Deterministic global optimization in ab-initio quantum chemistry. J. Glob. Optim. 56(2), 537–558 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lavor, C., Cardozo, T., Nascimento, M.A.C.: Using an interval branch-and-bound algorithm in the Hartree–Fock method. Int. J. Quantum Chem. 103, 500–504 (2005)CrossRefGoogle Scholar
  12. 12.
    Lavor, C., Liberti, L., Maculan, N., Chaer Nascimento, M.: Solving Hartree–Fock systems with global optimization methods. Europhys. Lett. 5(77), 50006p1–50006p5 (2007)Google Scholar
  13. 13.
    Levine, I.: Quantum Chemistry, 2nd edn. Prentice-Hall, Upper Saddle River (2000)Google Scholar
  14. 14.
    Liberti, L.: Reformulations in mathematical programming: definitions and systematics. RAIRO-RO 43(1), 55–86 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liberti, L.: Modelling rank constraints in mathematical programming. In: Pickl, S., et al. (eds.) Proceedings of the 11th Cologne-Twente Workshop on Graphs and Combinatorial Optimization. Universität der Bundeswehr, München (2012)Google Scholar
  16. 16.
    Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. A 131, 273–304 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Liberti, L.: Symmetry in mathematical programming. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, IMA, vol. 154, pp. 263–286. Springer, New York (2012)CrossRefGoogle Scholar
  18. 18.
    Liberti, L., Lavor, C., Nascimento, M.C., Maculan, N.: Reformulation in mathematical programming: an application to quantum chemistry. Discrete Appl. Math. 157, 1309–1318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Martin, R.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Murray, W., Gill, P., Raman, R., Kalvelagen, E.: GAMS/MINOS: a solver for large-scale nonlinear optimization problems. Technical Report 10.1.1.16.8658, CiteSeerX (2007)Google Scholar
  21. 21.
    Penrose, R.: The Road to Reality. Knopf, New York (2004)Google Scholar
  22. 22.
    Rendl, F.: Semidefinite relaxations for partitioning, assignment and ordering problems. 4OR 10(4), 321–346 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Schoen, F.: Two-phase methods for global optimization. In: Pardalos, P., Romeijn, H. (eds.) Handbook of Global Optimization, vol. 2, pp. 151–177. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  24. 24.
    Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. Phys. 384, 361–377 (1926)CrossRefzbMATHGoogle Scholar
  25. 25.
    Solis, F., Wets, R.: Minimization of random search techniques. Math. Oper. Res. 6(1), 19–30 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Spellucci, P.: DONLP2 Users Guide. TU Darmstadt, Darmstadt (2009)Google Scholar
  27. 27.
    Szabo, A., Ostlund, N.: Modern Quantum Chemistry. McGraw-Hill, New York (1989)Google Scholar
  28. 28.
    Zorn, K., Sahinidis, N.: Hartree fock self-consistent calculations: global optimization of electronic structure. In: Proceedings of 10th AIChE Annual Meeting. AIChE (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CNRS LIX, École PolytechniquePalaiseauFrance
  2. 2.Department of Applied Mathematics (IMECC-UNICAMP)University of CampinasCampinasBrazil
  3. 3.Universidade Federal do Rio de Janeiro, COPPE – UFRJRio de JaneiroBrazil

Personalised recommendations