Advertisement

Absolute value equations with uncertain data

  • M. A. RaayatpanahEmail author
  • H. Moosaei
  • P. M. Pardalos
Original Paper
  • 25 Downloads

Abstract

Absolute value equations (AVE) provide a useful tool for optimization as they subsume many mathematical programming problems. However, in some applications, it is difficult to determine the exact values of the problem data and there may be some certain errors. Finding a solution for AVE based on erroneous data using existing approaches might yield a meaningless solution. In this paper, robust optimization, which represents errors in the problem data, is used. We prove that a robust solution can be obtained by solving a robust counterpart problem, which is equivalent to a second order cone program. The results also show that robust solutions can significantly improve the performance of solutions, especially when the size of errors in the problem is large.

Keywords

Absolute value equations Second-order conic programming Robust optimization 

Notes

Acknowledgements

M. A. Raayatpanah was partially supported by a grant from Kharazmi University. P.M. Pardalos was partially supported by the Paul and Heidi Brown Preeminent Professorship at ISE, University of Florida.

References

  1. 1.
    Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, Hoboken (2013)zbMATHGoogle Scholar
  3. 3.
    Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1), 1–13 (1999)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, vol. 2. SIAM, Philadelphia (2001)zbMATHGoogle Scholar
  6. 6.
    Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cottle, R.W., Dantzig, G.B.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1(1), 103–125 (1968)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem, vol. 60. SIAM, Philadelphia (1992)zbMATHGoogle Scholar
  9. 9.
    Ketabchi, S., Moosaei, H.: An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side. Comput. Math. Appl. 64(6), 1882–1885 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ketabchi, S., Moosaei, H.: Minimum norm solution to the absolute value equation in the convex case. J. Optim. Theory. Appl. 154(3), 1080–1087 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1), 193–228 (1998)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Mangasarian, O.: Absolute value equation solution via concave minimization. Optim. Lett. 1(1), 3–8 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Mangasarian, O.: A generalized newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Mangasarian, O., Meyer, R.: Absolute value equations. Linear Algebra Appl. 419(2), 359–367 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Mangasarian, O.L.: Primal-dual bilinear programming solution of the absolute value equation. Optim. Lett. 6(7), 1527–1533 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Mangasarian, O.L.: Absolute value equation solution via dual complementarity. Optim. Lett. 7(4), 625–630 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Mangasarian, O.L.: A hybrid algorithm for solving the absolute value equation. Optim. Lett. 9(7), 1469–1474 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Moosaei, H., Ketabchi, S., Noor, M., Iqbal, J., Hooshyarbakhsh, V.: Some techniques for solving absolute value equations. Appl. Math. Comput. 268, 696–705 (2015)MathSciNetGoogle Scholar
  19. 19.
    Noor, M.A., Iqbal, J., Al-Said, E.: Residual iterative method for solving absolute value equations. Abst. Appl. Anal. 2012, 1–9 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Pardalos, P.M., Ketabchi, S., Moosaei, H.: Minimum norm solution to the positive semidefinite linear complementarity problem. Optimization 63(3), 359–369 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Prokopyev, O.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372 (2009)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Rohn, J.: An algorithm for solving the absolute value equation. Electron. J. Linear Algebra 18(589–599), 5 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Rohn, J.: On unique solvability of the absolute value equation. Optim. Lett. 3(4), 603–606 (2009)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Rohn, J.: An algorithm for computing all solutions of an absolute value equation. Optim. Lett. 6(5), 851–856 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Salkuyeh, D.K.: The picard-hss iteration method for absolute value equations. Optim. Lett. 8(8), 2191–2202 (2014)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Soyster, A.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)zbMATHGoogle Scholar
  28. 28.
    Wang, X., Fan, N., Pardalos, P.M.: Robust chance-constrained support vector machines with second-order moment information. Ann. Oper. Res. 263(1–2), 45–68 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Wang, X., Pardalos, P.M.: A survey of support vector machines with uncertainties. Ann. Data Sci. 1(3–4), 293–309 (2014)Google Scholar
  30. 30.
    Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B.: Robust Data Mining. Springer, Berlin (2012)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsKharazmi UniversityTehranIran
  2. 2.Department of MathematicsUniversity of BojnordBojnordIran
  3. 3.Center for Applied Optimization, Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations