Advertisement

A 4-approximation algorithm for k-prize collecting Steiner tree problems

  • Yusa Matsuda
  • Satoshi Takahashi
Original Paper
  • 24 Downloads

Abstract

This paper studies a 4-approximation algorithm for k-prize collecting Steiner tree problems. This problem generalizes both k-minimum spanning tree problems and prize collecting Steiner tree problems. Our proposed algorithm employs two 2-approximation algorithms for k-minimum spanning tree problems and prize collecting Steiner tree problems. Also our algorithm framework can be applied to a special case of k-prize collecting traveling salesman problems.

Keywords

Approximation algorithm Primal-dual algorithm k-prize collecting Steiner tree problems k-prize collecting traveling salesman problems 

Notes

Acknowledgements

We thank one anonymous reviewer for very valuable feedback. This research was partially supported by the Ministry of Education, Science, Sports and Culture through Grants-in-Aid for Scientific Research (C) 26330025, (B) 15H02972, and through Grants-in-Aid for Young Scientists (B) 26870200.

References

  1. 1.
    Korte, B.H., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Berlin (2004)zbMATHGoogle Scholar
  2. 2.
    Han, L., Xu, D., Du, D., Wu, C.: A 5-approximation algorithm for the k-prize-collecting Steiner tree problem. Optim. Lett. (2017).  https://doi.org/10.1007/s11590-017-1135-8
  3. 3.
    Ravi, R., Sundaram, R., Marathe, M., Rosenkrantz, D., Ravi, S.: Spanning trees short and small. SIAM J. Discrete Math. 9(2), 178–200 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fischetti, M., Hamacher, H.W., Jörnsten, K., Maffioli, F.: Weighted \(k\)-cardinality trees: complexity and polyhedral structure. Networks 24, 11–21 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Garg, N.: A 3-approximation for the minimum tree spanning \(k\) vertices. In: Proceedings of 37th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 302–309 (1996)Google Scholar
  6. 6.
    Blum, A., Ravi, R., Vempala, S.: A constant factor approximation for the \(k\)-MST problem. J. Comput. Syst. Sci. 58(1), 101–108 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Arora, S., Karakostas, G.: A \(2+\epsilon \) approximation algorithm for the \(k\)-MST problem. Math. Program. Ser. A 107, 491–504 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24, 296–317 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Archer, A., Mohammadhossein, B., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for prize-collecting Steiner tree and TSP. SIAM J. Comput. 40, 309–332 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Garg, N.: Saving an epsilon: a 2-approximation for the \(k\)-MST problem in graphs. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 396–402 (2005)Google Scholar
  11. 11.
    Ausiello, G., Bonifaci, V., Leonardi, S., Spaccamela, A.M.: Prize collecting traveling salesman problem and related problems. In: Handbook of Approximation Algorithms and Metaheuristics, Chapter 40. Chapman & Hall/CRC (2007)Google Scholar
  12. 12.
    Balas, E.: The prize collecting traveling salesman problem. Networks 19, 621–636 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: New approximation guarantees for minimum-weight \(k\)-trees and prize-collecting salesmen. SIAM J. Comput. 28(1), 254–262 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The University of Electro-CommunicationsChofuJapan

Personalised recommendations