Advertisement

Packing a fixed number of identical circles in a circular container with circular prohibited areas

  • C. O. López
  • J. E. Beasley
Original Paper
  • 4 Downloads

Abstract

In this paper we consider the problem of packing a fixed number of identical circles inside the unit circle container, where the packing is complicated by the presence of fixed size circular prohibited areas. Here the objective is to maximise the radius of the identical circles. We present a heuristic for the problem based upon formulation space search. Computational results are given for six test problems involving the packing of up to 100 circles. One test problem has a single prohibited area made up from the union of circles of different sizes. Four test problems are annular containers, which have a single inner circular prohibited area. One test problem has circular prohibited areas that are disconnected.

Keywords

Circle packing Formulation space search Nonlinear optimisation Prohibited area 

Notes

Acknowledgements

The first author has grant support from the programme UNAM-DGAPA-PAPIIT-IA106916.

References

  1. 1.
    Amirgaliyeva, Z., Mladenović, N., Todosijević, R., Urosević, D.: Solving the maximum min-sum dispersion by alternating formulations of two different problems. Eur. J. Oper. Res. 260(2), 444–459 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Birgin, E.G., Gentil, J.M.: New and improved results for packing identical unitary radius circles within triangles, rectangles and strips. Comput. Oper. Res. 37(7), 1318–1327 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere packing problems. Comput. Oper. Res. 35(7), 2357–2375 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brimberg, J., Drezner, Z., Mladenović, N., Salhi, S.: A new local search for continuous location problems. Eur. J. Oper. Res. 232(2), 256–265 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Butenko, S., Yezerska, O., Balasundaram, B.: Variable objective search. J. Heuristics 19(4), 697–709 (2013)CrossRefGoogle Scholar
  6. 6.
    Castillo, I., Kampas, F.J., Pinter, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191(3), 786–802 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Duarte, A., Pantrigo, J.J., Pardo, E.G., Sánchez-Oro, J.: Parallel variable neighbourhood search strategies for the cutwidth minimization problem. IMA J. Manag. Math. 27(1), 55–73 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Erromdhani, R., Jarboui, B., Eddaly, M., Rebai, A., Mladenović, N.: Variable neighborhood formulation search approach for the multi-item capacitated lot-sizing problem with time windows and setup times. Yugosl. J. Oper. Res. 27(3), 310–322 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for SNOPT version 7: software for large-scale nonlinear programming. http://web.stanford.edu/group/SOL/guides/sndoc7.pdf. Last accessed 14 June 2018 (2008)
  10. 10.
    Hansen, P., Mladenović, N., Brimberg, J., Perez, J.A.M.: Variable neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 146, pp. 61–86. Springer, Berlin (2010)CrossRefGoogle Scholar
  11. 11.
    Hansen, P., Mladenović, N., Todosijević, T., Hanafi, S.: Variable neighborhood search: basics and variants. EURO J. Comput. Optim. 5(3), 423–454 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discrete Appl. Math. 156(13), 2551–2560 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hertz, A., Plumettaz, M., Zufferey, N.: Corrigendum to variable space search for graph coloring [Discrete Appl. Math. 156 (2008) 2551–2560]. Discrete Appl. Math. 157(7), 1335–1336 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. Adv. Oper. Res.  https://doi.org/10.1155/2009/150624. (2009)CrossRefGoogle Scholar
  15. 15.
    Holmström., K., Göran, A.O., Edvall, M.M.: User’s guide for TOMLAB/SNOPT. http://tomopt.com/docs/TOMLAB_SNOPT.pdf. Last accessed 14 June 2018 (2008)
  16. 16.
    Huang, W.Q., Ye, T.: Greedy vacancy search algorithm for packing equal circles in a square. Oper. Res. Lett. 38(5), 378–382 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kochetov, Y., Kononova, P., Paschenko, M.: Formulation space search approach for the teacher/class timetabling problem. Yugosl. J. Oper. Res. 18(1), 1–11 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, Y., Akeb, H.: Basic heuristics for packing a great number of equal circles. Working Paper Available From the Second Author at ISC Paris Business School, 22, Bd du Fort de Vaux, 75017 Paris, France (2005)Google Scholar
  19. 19.
    López, C.O.: Formulation space search for two-dimensional packing problems. Ph.D. thesis, Brunel University (2013)Google Scholar
  20. 20.
    López, C.O., Beasley, J.E.: A heuristic for the circle packing problem with a variety of containers. Eur. J. Oper. Res. 214(3), 512–525 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    López, C.O., Beasley, J.E.: Packing unequal circles using formulation space search. Comput. Oper. Res. 40(5), 1276–1288 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    López, C.O., Beasley, J.E.: A note on solving MINLP’s using formulation space search. Optim. Lett. 8(3), 1167–1182 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    López, C.O., Beasley, J.E.: A formulation space search heuristic for packing unequal circles in a fixed size circular container. Eur. J. Oper. Res. 251(1), 64–73 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    López, C.O., Beasley, J.E.: Packing unequal rectangles and squares in a fixed size circular container using formulation space search. Comput. Oper. Res. 94, 106–117 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mladenović, N., Plastria, F., Urošević, D.: Reformulation descent applied to circle packing problems. Comput. Oper. Res. 32(9), 2419–2434 (2005)CrossRefGoogle Scholar
  26. 26.
    Mladenović, N., Plastria, F., Urošević, D.: Formulation space search for circle packing problems. In: “Engineering Stochastic Local Search Algorithms. Designing, Implementing and Analyzing Effective Heuristics”, Proceedings of the International Workshop, SLS 2007, Brussels, Belgium, Sep 6–8, 2007. Lecture Notes in Computer Science volume 4638, pp. 212–216 (2007)Google Scholar
  27. 27.
    Pardo, E.G., Mladenović, N., Pantrigo, J.J., Duarte, A.: Variable formulation search for the cutwidth minimization problem. Appl. Soft Comput. 13(5), 2242–2252 (2013)CrossRefGoogle Scholar
  28. 28.
    Pedroso, J.P., Cunha, S., Tavares, J.N.: Recursive circle packing problems. Int. Trans. Oper. Res. 23(1–2), 355–368 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Specht, E.: http://www.packomania.com. Last accessed 14 June 2018 (2010)
  30. 30.
    Stoyan, Y., Pankratov, A., Romanova, T.: Quasi-phi-functions and optimal packing of ellipses. J. Glob. Optim. 65(2), 283–307 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Stoyan, Y., Yaskov, G.: Packing equal circles into a circle with circular prohibited areas. Int. J. Comput. Math. 89(10), 1355–1369 (2012)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Stoyan, Y., Yaskov, G.: Packing congruent hyperspheres into a hypersphere. J. Glob. Optim. 52(4), 855–868 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Stoyan, Y.G., Zlotnik, M.V., Chugay, A.M.: Solving an optimization packing problem of circles and non-convex polygons with rotations into a multiply connected region. J. Oper. Res. Soc. 63(3), 379–391 (2012)CrossRefGoogle Scholar
  34. 34.
    Szabó, P.G., Markót, M.C., Csendes, T., Specht, E., Casado, L.G., Garcia, I.: New Approaches to Circle Packing in a Square: With Program Codes, vol. 6. Springer Optimization and its Applications, Berlin (2007)zbMATHGoogle Scholar
  35. 35.
    Wang, H., Huang, W., Zhang, Q., Xu, D.: An improved algorithm for the packing of unequal circles within a larger containing circle. Eur. J. Oper. Res. 141(2), 440–453 (2002)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wieman, H.: SSD cable packing. http://www-rnc.lbl.gov/~wieman/SSDpackingcombined.pdf. Last accessed 14 June 2018 (2008)
  37. 37.
    Zhuang, X.Y., Yan, L., Chen, L.: Packing equal circles in a damaged square. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE, New York (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of SciencesNational Autonomous University of MexicoMexico CityMexico
  2. 2.Mathematical SciencesBrunel UniversityUxbridgeUK
  3. 3.JB ConsultantsMordenUK

Personalised recommendations