Advertisement

Optimization Letters

, Volume 13, Issue 8, pp 1715–1725 | Cite as

Optimal control of nonlinear systems with separated linear part via quadratic criteria

  • Alexander P. Afanas’ev
  • Sergei M. DzyubaEmail author
  • Irina I. Emelyanova
  • Alexander N. Pchelintsev
  • Elena V. Putilina
Original Paper

Abstract

We present a method for synthesis of optimal control with feedback of nonlinear systems with separated linear part via quadratic criteria. This method is based on a special method of successive approximations, which allows, under standard assumptions, to find optimal control within any finite time interval and to get the procedure of its construction. An example is provided for applying this method for synthesis of control of a system which is similar to Watt’s centrifugal governor.

Keywords

Optimal control with feedback Method of successive approximations Nonlinear systems with separated linear part Riccati equation Generalized Horner scheme 

Notes

Acknowledgements

The research was supported by the Russian Science Foundation (Project 16-11-10352) and Russian Foundation for Basic Research (Projects 16-07-00801, 18-01-00842).

References

  1. 1.
    Athans, M., Falb, P.: Optimal Control. McGraw-Hill, New York (1966)zbMATHGoogle Scholar
  2. 2.
    Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton (1961)CrossRefGoogle Scholar
  3. 3.
    Lukes, D.L.: Optimal regulation of nonlinear systems. SIAM J. Control Optim. 7, 75–100 (1969)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Yamamoto, Y.: Optimal control of nonlinear systems with quadratic performance. J. Math. Anal. Appl. 64, 348–353 (1978)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dacka, C.: On the controllability of a class of nonlinear systems. IEEE Trans. Autom. Control 25, 263–266 (1980)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Balachandran, K., Somasundaram, D.: Existence of optimal control for nonlinear systems with quadratic performance. J. Aust. Math. Soc. Ser. B 29, 249–255 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Afanas’ev, A.P., Dzyuba, S.M., Lobanov, S.M., Tyutyunnik, A.V.: Successive approximation and suboptimal control of systems with separated linear part. Appl. Comput. Math. 2(1), 48–56 (2003)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Afanas’ev, A.P., Dzyuba, S.M., Lobanov, S.M., Tyutyunnik, A.V.: On a suboptimal control of nonlinear systems via quadratic criteria. Appl. Comput. Math. 3(2), 158–169 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Afanas’ev, A.P., Dzyuba, S.M.: Optimal control of nonlinear systems via quadratic criteria. Trans. ISA RAS 32, 49–62 (2008). (in Russian)Google Scholar
  10. 10.
    Afanasiev, A.P., Dzyuba, S.M.: Method for constructing approximate analytic solutions of differential equations with a polynomial right hand-side. Comput. Math. Math. Phys. 55(10), 1665–1673 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Afanasiev, A.P., Dzyuba, S.M., Emelyanova, I.I., Putilina, E.V.: Decomposition algorithm of generalized Horner scheme for multidimensional polynomial evaluation. In: Proceedings of the OPTIMA-2017 Conference, Petrovac, Montenegro, pp. 7–11 (2017)Google Scholar
  12. 12.
    Pontryagin, L.S.: Ordinary Differential Equations. Addison-Wesley, Reading (1962)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexander P. Afanas’ev
    • 1
    • 2
  • Sergei M. Dzyuba
    • 3
    Email author
  • Irina I. Emelyanova
    • 3
  • Alexander N. Pchelintsev
    • 4
  • Elena V. Putilina
    • 1
  1. 1.Institute for Information Transmission Problems RASMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Tver State Technical UniversityTverRussia
  4. 4.Tambov State Technical UniversityTambovRussia

Personalised recommendations