Communication topology optimization for three-dimensional persistent formation with leader constraint

  • Guoqiang Wang
  • He LuoEmail author
  • Xiaoxuan Hu
  • Shanlin Yang
Original Paper


We address the communication topology optimization problem for a three-dimensional persistent formation with leader constraint to minimize the formation communication cost while maintaining its shape. We first analyze the formation shape, network topology, communication topology, and leader constraint of a three-dimensional persistent formation to establish the optimization model of the problem. We then propose an exact algorithm, which includes three kernel sub-algorithms, to solve the model, and theoretically prove its validity. A numerical example is shown to demonstrate the effectiveness of the algorithm.


Communication topology optimization Three-dimensional persistent formation Leader constraint Three-dimensional optimally persistent graph Formation communication cost 



This work is supported by the National Natural Science Foundation of China (Grant Nos. 71671059, 71401048, 71521001, 71690230, 71690235, and 71472058), the Anhui Provincial Natural Science Foundation, China (Grant No. 1808085MG213, 1508085MG140), and the Fundamental Research Funds for the Central Universities (JZ2018HGBZ0128).


  1. 1.
    Goh, S.T., Zekavat, S.A., Abdelkhalik, O.: LEO satellite formation for SSP: energy and doppler analysis. IEEE Trans. Aerosp. Electron. Syst. 51(1), 18–30 (2015)CrossRefGoogle Scholar
  2. 2.
    Dai, Y., Kim, Y., Wee, S., Lee, D., Lee, S.: Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control. ISA Trans. 60, 321–332 (2016)CrossRefGoogle Scholar
  3. 3.
    Anderson, B.D.O., Fidan, B., Yu, C., Walle, D.: UAV Formation Control: Theory and Application. Recent Advances in Learning and Control, pp. 15–33. Springer, Berlin (2008)CrossRefzbMATHGoogle Scholar
  4. 4.
    Park, M.C., Ahn, H.S.: Distance-based acyclic minimally persistent formations with non-steepest descent control. Int. J. Control Autom. Syst. 14(1), 163–173 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kang, S.M., Park, M.C., Ahn, H.S.: Distance-based cycle-free persistent formation: global convergence and experimental test with a group of quadcopters. IEEE Trans. Industr. Electron. 64(1), 380–389 (2017)CrossRefGoogle Scholar
  6. 6.
    Cao, H., Bai, Y.Q., Chen, J., Fang, H.: Control of 2D minimally persistent formations with three co-leaders in a cycle. Int. J. Adv. Rob. Syst. 10(21), 1–9 (2013)Google Scholar
  7. 7.
    Park, M.C., Jeong, K., Ahn, H.S.: Formation stabilization and resizing based on the control of inter-agent distances. Int. J. Robust Nonlinear Control 25(14), 2532–2546 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hendrickx, J.M., Anderson, B.D.O., Delvenne, J.C., Blondel, V.D.: Directed graphs for the analysis of rigidity and persistence in autonomous agent systems. Int. J. Robust Nonlinear Control 17(10–11), 960–981 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yu, C., Hendrickx, J.M., Fidan, B., Anderson, B.D.O., Blondel, V.D.: Three and higher dimensional autonomous formations: rigidity, persistence and structural persistence. Automatica 43, 387–402 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, G.Q., Luo, H., Hu, X.X., Ma, H.W., Yang, S.L.: Fault-tolerant communication topology management based on minimum cost arborescence for leader–follower UAV formation under communication faults. Int. J. Adv. Rob. Syst. 14(2), 1–17 (2017)Google Scholar
  11. 11.
    Hendrickx, J.M., Fidan, B., Changbin, Y., Anderson, B.D.O., Blondel, V.D.: Formation reorganization by primitive operations on directed graphs. IEEE Trans. Autom. Control 53(4), 968–979 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Smith, B.S., Egerstedt, M., Howard, A.: Automatic generation of persistent formations for multi-agent networks under range constraints. Mobile Netw. Appl. 14(3), 322–335 (2009)CrossRefGoogle Scholar
  13. 13.
    Luo, X.Y., Shao, S.K., Zhang, Y.Y., Li, S.B., Guan, X.P., Liu, Z.X.: Generation of minimally persistent circle formation for a multi-agent system. Chin. Phys. B 23(2), 614–622 (2014)Google Scholar
  14. 14.
    Luo, X.Y., Li, S.B., Guan, X.P.: Automatic generation of min-weighted persistent formations. Chin. Phys. B 18(8), 3104–3114 (2009)CrossRefGoogle Scholar
  15. 15.
    Wang, G.Q., Luo, H., Hu, X.X.: Generation of optimal persistent formations for heterogeneous multi-agent systems with a leader constraint. Chin. Phys. B 27(2), 028901 (2018)CrossRefGoogle Scholar
  16. 16.
    Yong, E.: Autonomous drones flock like birds. Nature. Accessed 20 Oct 2017
  17. 17.
    Cao, X., Zhu, D.Q., Yang, S.X.: Multi-AUV target search based on bioinspired neurodynamics model in 3-D underwater environments. IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2364–2374 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pei, J., Pardalos, P.M., Liu, X.B., Fan, W.J., Yang, S.L.: Serial batching scheduling of deteriorating jobs in a two-stage supply chain to minimize the makespan. Eur. J. Oper. Res. 244(1), 13–25 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pei, J., Liu, X.B., Fan, W.J., Pardalos, P.M., Lu, S.J.: A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers. OMEGA (2017)Google Scholar
  20. 20.
    Pei, J., Liu, X.B., Pardalos, P.M., Fan, W.J., Yang, S.L.: Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times. Ann. Oper. Res. 249(1–2), 175–195 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pei, J., Liu, X.B., Pardalos, P.M., Migdalas, A., Yang, S.L.: Serial-batching scheduling with time-dependent setup time and effects of deterioration and learning on a single-machine. J. Global Optim. 67(1–2), 251–262 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Xue, L., Chen, X., Zhao, J., Guan, X.A.: Fault-tolerant topology control algorithm base on optimally rigid graph in 3-dimensional wireless sensor networks. In: 2015 34th Chinese Control Conference, pp. 7795–7800 (2015)Google Scholar
  23. 23.
    Atofigh, E.: Edmonds’s algorithm. Accessed 20 October 2017
  24. 24.
    Jacob, B., Guennebaud, G., Avery, P., Bachrach, A., Barthelemy, S., Becker, C., et al.: Eigen. Accessed 25 October 2017

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ManagementHefei University of TechnologyHefeiChina
  2. 2.Key Laboratory of Process Optimization and Intelligent Decision-MakingMinistry of EducationHefeiChina

Personalised recommendations