Optimization Letters

, Volume 13, Issue 1, pp 3–21 | Cite as

A tolerance function for the multiobjective set covering problem

  • Lakmali WeerasenaEmail author
  • Margaret M. Wiecek
Original Paper


The multiobjective set covering problem (MOSCP), an NP-hard combinatorial optimization problem, has received limited attention in the literature from the perspective of approximating its Pareto set. The available algorithms for approximating the Pareto set do not provide a bound for the approximation error. In this study, a polynomial-time algorithm is proposed to approximate an element in the weak Pareto set of the MOSCP with a quality that is known. A tolerance function is defined to identify the approximation quality and is derived for the proposed algorithm. It is shown that the tolerance function depends on the characteristics of the problem and the weight vector that is used for computing the approximation. For a set of weight vectors, the algorithm approximates a subset of the weak Pareto set of the MOSCP.


Approximation algorithm Approximation error Representation Combinatorial optimization Efficient solution Max-ordering 


  1. 1.
    Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Appl. Math. 123(1), 75–102 (2002)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Angel, E., Bampis, E., Gourvés, L.: Approximating the Pareto curve with local search for the bicriteria TSP (1, 2) problem. Theor. Comput. Sci. 310(1–3), 135–146 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering problem. Oper. Res. 47(5), 730–743 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Daskin, M.S., Stern, E.H.: A hierarchical objective set covering model for emergency medical service vehicle deployment. Transp. Sci. 15(2), 137–152 (1981)MathSciNetGoogle Scholar
  6. 6.
    Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimization problems. Int. Trans. Oper. Res. 7(1), 5–31 (2000)MathSciNetGoogle Scholar
  7. 7.
    Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2006)zbMATHGoogle Scholar
  8. 8.
    Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spectr. 22(4), 425–460 (2000)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective Knapsack problems. Manag. Sci. 48(12), 1603–1612 (2002)zbMATHGoogle Scholar
  10. 10.
    Florios, K., Mavrotas, G.: Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems. Appl. Math. Comput. 237, 1–19 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
  12. 12.
    Jaszkiewicz, A.: Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem. IEEE Trans. Evolut. Comput. 7(2), 133–143 (2003)MathSciNetGoogle Scholar
  13. 13.
    Jaszkiewicz, A.: A comparative study of multiple-objective metaheuristics on the bi-objective set covering problem and the Pareto memetic algorithm. Ann. Oper. Res. 131(1), 135–158 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations, pp. 85–103. Springer, Berlin (1972)Google Scholar
  15. 15.
    Liu, Y.-H.: A heuristic algorithm for the multi-criteria set-covering problems. Appl. Math. Lett. 6(5), 21–23 (1993)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lust, T., Teghem, J., Tuyttens, D.: Very large-scale neighborhood search for solving multiobjective combinatorial optimization problems. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO, pp. 254–268. Springer, Berlin (2011)Google Scholar
  17. 17.
    Lust, T., Tuyttens, D.: Variable and large neighborhood search to solve the multiobjective set covering problem. J. Heurist. 20(2), 165–188 (2014)zbMATHGoogle Scholar
  18. 18.
    McDonnell, M.D., Possingham, H.P., Ball, I.R., Cousins, E.A.: Mathematical methods for spatially cohesive reserve design. Environ. Model. Assess. 7(2), 107–114 (2002)Google Scholar
  19. 19.
    Musliu, N.: Local search algorithm for unicost set covering problem. In: Dapoigny, R., Ali, M. (eds.) IEA/AIE, pp. 302–311. Springer, Berlin (2006)Google Scholar
  20. 20.
    Orlin, J.B., Ahuja, R.K., Magnanti, T.L.: Network flows: theory, algorithms, and applications. Prentice Hall, New Jersey (1993)Google Scholar
  21. 21.
    Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pp. 86–92. IEEE (2000)Google Scholar
  22. 22.
    Prins, C., Prodhon, C., Calvo, R.W.: Two-phase method and Lagrangian relaxation to solve the bi-objective set covering problem. Ann. Oper. Res. 147(1), 23–41 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Saxena, R.R., Arora, S.R.: Linearization approach to multi-objective quadratic set covering problem. Optimization 43(2), 145–156 (1998)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a survey. J. Multi-Criteria Decis. Anal. 3(2), 83–104 (1994)zbMATHGoogle Scholar
  25. 25.
    Vanderpooten, D., Weerasena, L., Wiecek, M.M.: Covers and approximations in multiobjective optimization. J. Glob. Optim. 67(3), 601–619 (2017)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2013)Google Scholar
  27. 27.
    Weerasena, L., Shier, D., Tonkyn, D.: A hierarchical approach to designing compact ecological reserve systems. Environ. Model. Assess. 19(5), 437–449 (2014)Google Scholar
  28. 28.
    Weerasena, L., Wiecek, M.M., Soylu, B.: An algorithm for approximating the Pareto set of the multiobjective set covering problem. Ann. Oper. Res. 248(1–2), 493–514 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Tennessee at ChattanoogaChattanoogaUSA
  2. 2.Clemson UniversityClemsonUSA

Personalised recommendations