Advertisement

Optimization Letters

, Volume 13, Issue 1, pp 201–211 | Cite as

Continuity of approximate solution maps of primal and dual vector equilibrium problems

  • L. Q. Anh
  • P. Q. Khanh
  • T. N. TamEmail author
Original Paper
  • 74 Downloads

Abstract

In this paper, we study the primal and dual vector equilibrium problems under perturbations in locally convex Hausdorff topological vector spaces. Sufficient conditions for the approximate solution maps to be continuous are established. Some applications to special cases are also presented.

Keywords

Vector equilibrium problems Approximate solution maps Hausdorff continuity Vector optimization problems Vector variational inequalities 

Notes

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 101.01-2017.18. The authors would like to thank the anonymous referees for his/her valuable remarks and suggestions which have improved the paper.

References

  1. 1.
    Anh, L.Q., Khanh, P.Q.: Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems. J. Math. Anal. Appl. 294, 699–711 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Anh, L.Q., Khanh, P.Q.: Sensitivity analysis for multivalued quasiequilibrium problems in metric spaces: Hölder continuity of solutions. J. Glob. Optim. 42, 515–531 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Anh, L.Q., Khanh, P.Q.: Hölder continuity of the unique solution to quasiequilibrium problems in metric Spaces. J. Optim. Theory Appl. 141, 37–54 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Anh, L.Q., Khanh, P.Q.: Continuity of solution maps of parametric quasiequilibrium problems. J. Glob. Optim. 46, 247–259 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Anh, L.Q., Khanh, P.Q., Tam, T.N.: On Hölder continuity of approximate solutions to parametric equilibrium problems. Nonlinear Anal. 75, 2293–2303 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Anh, L.Q., Khanh, P.Q., Tam, T.N.: On Hölder continuity of solution maps of parametric primal and dual Ky Fan inequalities. TOP 23, 151–167 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilibrium problems. J. Optim. Theory Appl. 90, 31–43 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bianchi, M., Hadjisavvas, N., Schaible, S.: Equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92, 527–542 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chen, C.R., Li, S.L., Teo, T.L.: Solution semicontinuity of parametric generalized vector equilibrium problems. J. Glob. Optim. 45, 309–318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, C.R., Li, S.J., Zeng, J., Li, X.B.: Error analysis of approximate solutions to parametric vector quasiequilibrium problems. Optim. Lett. 5, 85–98 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cheng, Y.H., Zhu, D.L.: Global stability results for the weak vector variational inequality. J. Glob. Optim. 32, 543–550 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gong, X.H.: Strong vector equilibrium problems. J. Glob. Optim. 36, 339–349 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gong, X.H.: Continuity of the solution set to parametric vector equilibrium problem. J. Optim. Theory Appl. 139, 35–46 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hai, N.X., Khanh, P.Q.: Existence of solutions to general quasiequilibrium problems and applications. J. Optim. Theory Appl. 133, 317–327 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hai, N.X., Khanh, P.Q.: The solution existence of general variational inclusion problems. J. Math. Anal. Appl. 328, 1268–1277 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hai, N.X., Khanh, P.Q., Quan, N.H.: On the existence of solutions to quasivariational inclusion problems. J. Glob. Optim. 45, 565–581 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Khanh, P.Q., Long, V.S.T.: Invariant-point theorems and existence of solutions to optimization-related problems. J. Glob. Optim. 58, 545–564 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Khanh, P.Q., Quan, N.H.: Generic stability and essential components of generalized KKM points and applications. J. Optim. Theory Appl. 148, 488–504 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kim, W.K., Kum, S., Lee, K.H.: Semicontinuity of the solution multifunctions of the parametric generalized operator equilibrium problems. Nonlinear Anal. 71, 2182–2187 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kimura, K., Yao, J.C.: Semicontinuity of solution mappings of parametric generalized vector equilibrium problems. J. Optim. Theory Appl. 138, 429–443 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, X.B., Li, S.J.: Continuity of approximate solution mapping for parametric equilibrium problems. J. Glob. Optim. 51, 541–548 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, S.J., Li, X.B.: Hölder continuity of solutions to parametric weak generalized Ky Fan inequality. J. Optim. Theory Appl. 149, 540–553 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Li, S.J., Li, X.B., Wang, L.N., Teo, K.L.: The Hölder continuity of solutions to generalized vector equilibrium problems. Eur. J. Oper. Res. 199, 334–338 (2009)CrossRefzbMATHGoogle Scholar
  25. 25.
    Li, S.J., Liu, H.M., Chen, C.R.: Lower semicontinuity of parametric generalized weak vector equilibrium problems. Bull. Aust. Math. Soc. 81, 85–95 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Li, S.J., Chen, C.R., Li, X.B., Teo, K.L.: Hölder continuity and upper estimates of solutions to vector quasiequilibrium problems. Eur. J. Oper. Res. 210, 148–157 (2011)CrossRefzbMATHGoogle Scholar
  27. 27.
    Li, S.J., Liu, H.M., Zhang, Y., Fang, Z.M.: Continuity of solution mappings to parametric generalized strong vector equilibrium problems. Positivity 55, 341–353 (2013)MathSciNetGoogle Scholar
  28. 28.
    Xu, S., Li, S.J.: A new proof approach to lower semicontinuity for parametric vector equilibrium problems. Optim. Lett. 3, 453–459 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Xu, Y.D., Li, S.J.: On the lower semicontinuity of the solution mappings to a parametric generalized strong vector equilibrium problem. J. Glob. Optim. 17, 597–610 (2013)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Teacher CollegeCantho UniversityCanthoVietnam
  2. 2.Department of Mathematics, International UniversityVietnam National University Hochiminh CityHochiminh CityVietnam
  3. 3.Division of Computational Mathematics and Engineering, Institute for Computational ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations