Optimality conditions for semi-infinite programming problems involving generalized convexity

Original Paper
  • 50 Downloads

Abstract

We apply some advanced tools of quasiconvex analysis to establish Karush–Kuhn–Tucker type necessary and sufficient optimality conditions for non-differentiable semi-infinite programming problems. In addition, we propose a linear characterization of optimality for the mentioned problems. Examples are also designed to analyze and illustrate the results obtained.

Keywords

Semi-infinite programming Plastria function Gutiérrez functions Optimality conditions Linear characterization 

Notes

Acknowledgements

The authors are grateful to professor Miguel Ángel Goberna for his many helpful suggestions which have improved the presentation of the paper. Also, we would like to thank the three anonymous referees for carefully reading our work and for their helpful comments.

References

  1. 1.
    Cánovas, M.J., Hantoute, A., Parra, J., Toledo, F.J.: Boundary of subdifferentials and calmness moduli in linear semi-infinite optimization. Optim. Lett. 9, 513–521 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Gutiérrez Díez, J.M.: Infragradients and directions of decrease. Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 78, 523–532 (1984)MathSciNetMATHGoogle Scholar
  3. 3.
    Jeyakumar, V., Rubinov, A.M., Glover, B.M., Ishizuku, Y.: Inequality systems and global optimization. J. Math. Anal. Appl. 202, 900–919 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Kabgani, A., Soleimani-damaneh, M.: The relationships between convexificators and Greenberg–Pierskalla subdifferentials for quasiconvex functions. Numer. Funct. Anal. Optim. 38, 1548–1563 (2017)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kanzi, N.: Necessary optimality conditions for nonsmooth semi-infinite programming problems. J. Glob. Optim. 49, 713–725 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kanzi, N.: Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints. SIAM J. Optim. 24, 559–572 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kanzi, N., Nobakhtian, S.: Optimality conditions for nonsmooth semi-infinite programming. Optimization 59, 717–727 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kanzi, N., Nobakhtian, S.: Nonsmooth semi-infinite programming problems with mixed constraints. J. Math. Anal. Appl. 351, 170–181 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kanzi, N., Soleimani-damaneh, M.: Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems. J. Math. Anal. Appl. 434, 638–651 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Linh, N.T., Penot, J.P.: Optimality conditions for quasiconvex programming. SIAM J. Optim. 17, 500–510 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Li, W., Nahak, C., Singer, I.: Constraint qualifications in semi-infinite systems of convex inequalities. SIAM J. Optim. 11, 31–52 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Liu, Y., Goberna, M.A.: Asymptotic optimality conditions for linear semiinfinite programming. Optimization 65, 387–414 (2016)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    López, M.A., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    López, M.A., Vercher, E.: Optimality conditions for nondifferentiable convex semi-infinite Programming. Math. Program. 27, 307–319 (1983)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Martinez-Legaz, J.E.: Weak lower sbdifferentials and applications. Optimization 21, 321–341 (1990)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mordukhovich, B.S., Nghia, T.T.A.: Constraint qualification and optimality conditions in semi-infinite and infinite programming. Math. Program. 139, 271–300 (2013)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Mordukhovich, B.S., Nghia, T.T.A.: Nonsmooth cone-constrained optimization with applications to semi-infinite programming. Math. Oper. Res. 39, 301–324 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Mordukhovich, B.S., Nghia, T.T.A.: Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with Lipschitzian data. SIAM J. Optim. 23, 406–431 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Penot, J.P.: Are generalized derivatives useful for generalized convex functions? In: Crouzeix, J.-P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 3–59. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  20. 20.
    Plastria, F.: Lower subdifferentiable functions and their minimization by cutting plane. J. Optim. Theory Appl. 46, 37–53 (1985)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rockafellar, R.T., Wets, J.B.: Variational Analysis. Springer, Berlin (1998)CrossRefMATHGoogle Scholar
  22. 22.
    Xu, M., Wu, S.Y., Ye, J.: Solving semi-infinite programs by smoothing projected gradient method. Comput. Optim. Appl. 59, 591–616 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zhao, X.: On constraints qualification for an infinite system of quasiconvex inequalities in normed linear space. Taiwan. J. Math. 20(206), 685–697 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsPayame Noor University (PNU)TehranIran
  2. 2.Department of EconomicsUniversity of MessinaMessinaItaly
  3. 3.Department of Mathematics, Yazd BranchIslamic Azad UniversityYazdIran

Personalised recommendations