Advertisement

Optimization Letters

, Volume 12, Issue 5, pp 1079–1097 | Cite as

An efficient parameterized logarithmic kernel function for linear optimization

  • Mousaab Bouafia
  • Djamel Benterki
  • Adnan Yassine
Original Paper
  • 176 Downloads

Abstract

The introduction of kernel function in primal-dual interior point methods represents not only a measure of the distance between the iterate and the central path, but also plays an important role in the amelioration of the computational complexity of an interior point algorithm. In this work, we present a primal-dual interior point method for linear optimization problems based on a new kernel function with an efficient logarithmic barrier term. We derive the complexity bounds for large and small-update methods respectively. We obtain the best known complexity bound for large-update given by Peng et al., which improves significantly the so far obtained complexity results based on a logarithmic kernel function given by El Ghami et al. The results obtained in this paper are the first with respect to the kernel function with a logarithmic barrier term.

Keywords

Linear optimization Kernel function Interior point methods Complexity bound 

Notes

Acknowledgements

The authors are very grateful and would like to thank the anonymous referees for their suggestions and helpful comments which significantly improved the presentation of this paper.

References

  1. 1.
    Karmarkar, N.K.: A new polynomial-time algorithm for linear programming. In: Proceedings of the 16th Annual ACM Symposium on Theory of Computing, vol. 4, pp. 373–395 (1984)Google Scholar
  2. 2.
    Peng, J., Roos, C., Terlaky, T.: Self-Regularity: A New Paradigm for Primal-Dual Interior Point Algorithms. Princeton University Press, Princeton (2002)zbMATHGoogle Scholar
  3. 3.
    Roos, C., Terlaky, T., Vial, J.P.: Theory and Algorithms for Linear Optimization, An Interior Point Approach. Wiley, Chichester (1997)zbMATHGoogle Scholar
  4. 4.
    Ye, Y.: Interior Point Algorithms, Theory and Analysis. Wiley, Chichester (1997)CrossRefzbMATHGoogle Scholar
  5. 5.
    El Ghami, M.: New Primal-Dual Interior-Point Methods Based on Kernel Functions. PhD Thesis, TU Delft, The Netherlands (2005)Google Scholar
  6. 6.
    Peng, J., Roos, C., Terlaky, T.: A new and efficient large-update interior point method for linear optimization. J. Comput. Technol. 6, 61–80 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bai, Y.Q., El Ghami, M., Roos, C.: A comparative study of kernel functions for primal-dual interior point algorithms in linear optimization. SIAM J. Optim. 15(1), 101–128 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    El Ghami, M., Ivanov, I.D., Roos, C., Steihaug, T.: A polynomial-time algorithm for \(\text{ LO }\) based on generalized logarithmic barrier functions. Int. J. Appl. Math. 21, 99–115 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bai, Y.Q., Lesaja, G., Roos, C., Wang, G.Q., El Ghami, M.: A class of large-update and small-update primal-dual interior-point algorithms for linear optimization. J. Optim. Theory Appl. 138, 341–359 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bai, Y.Q., Roos, C.: A polynomial-time algorithm for linear optimization based on a new simple kernel function. Optim. Methods Softw. 18, 631–646 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    El Ghami, M., Guennoun, Z.A., Bouali, S., Steihaug, T.: Interior point methods for linear optimization based on a kernel function with a trigonometric barrier term. J. Comput. Appl. Math. 236, 3613–3623 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bouafia, M., Benterki, D., Yassine, A.: Complexity analysis of interior point methods for linear programming based on a parameterized kernel function. RAIRO Oper. Res. 50, 935–949 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bouafia, M., Benterki, D., Yassine, A.: An efficient primal-dual interior point method for linear programming problems based on a new kernel function with a trigonometric barrier term. J. Optim. Theory Appl. 170, 528–545 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Peyghami, M.R., Hafshejani, S.F., Shirvani, L.: Complexity of interior point methods for linear optimization based on a new trigonometric kernel function. J. Comput. Appl. Math. 255, 74–85 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Peyghami, M.R., Hafshejani, S.F.: Complexity analysis of an interior point algorithm for linear optimization based on a new proximity function. Numer. Algoritm. 67, 33–48 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cai, X.Z., Wang, G.Q., El Ghami, M., Yue, Y.J.: Complexity analysis of primal-dual interior-point methods for linear optimization based on a new parametric Kernel function with a trigonometric barrier term. Abstr. Appl. Anal., pages Art. ID 710158, 11, (2014)Google Scholar
  17. 17.
    Kheirfam, B., Moslem, M.: A polynomial-time algorithm for linear optimization based on a new kernel function with trigonometric barrier term. YUJOR 25(2), 233–250 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li, X., Zhang, M.: Interior-point algorithm for linear optimization based on a new trigonometric kernel function. Oper. Res. Lett 43(5), 471–475 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Bai, Y. Q., Roos, C.: A primal-dual interior point method based on a new kernel function with linear growth rate. In: Proceedings of the 9th Australian Optimization Day, Perth, Australia (2002)Google Scholar
  20. 20.
    Megiddo, N.: Pathways to the optimal set in linear programming. In: Megiddo, N. (ed.) Progress in Mathematical Programming: Interior Point and Related Methods, pp. 131–158. Springer, New York (1989)CrossRefGoogle Scholar
  21. 21.
    Sonnevend, G.: An “analytic center” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In: Prekopa, A., Szelezsan, J., Strazicky, B. (eds.) System Modelling and Optimization: Proceedings of the 12th IFIP-Conference, Budapest, Hungary, 1985, Lecture Notes in Control and Inform. Sci, vol. 84, pp. 866–876. Springer, Berlin (1986)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mousaab Bouafia
    • 1
    • 2
  • Djamel Benterki
    • 3
  • Adnan Yassine
    • 2
  1. 1.LabCAV, Laboratory of Advanced ControlUniversity of GuelmaGuelmaAlgeria
  2. 2.Normandie University, UNIHAVRE, LMAHLe HavreFrance
  3. 3.LMFN, Laboratory of Fundamental and Numerical MathematicsUniversity Setif 1SetifAlgeria

Personalised recommendations