Optimization Letters

, Volume 11, Issue 7, pp 1371–1384 | Cite as

A biased random-key genetic algorithm for the tree of hubs location problem

  • Luciana S. Pessoa
  • Andréa C. Santos
  • Mauricio G. C. Resende
Original Paper


Hubs are facilities used to treat and dispatch resources in a transportation network. The objective of Hub Location Problems (HLP) is to locate a set of hubs in a network and route resources from origins to destinations such that the total cost of attending all demands is minimized. In this paper, we investigate a particular HLP, called the Tree of Hubs Location Problem in which hubs are connected by means of a tree and the overall network infrastructure relies on a spanning tree. This problem is particularly interesting when the total cost of building the hub backbone is high. We propose a biased random key genetic algorithm for solving the tree of hubs location problem. Computational results show that the proposed heuristic is robust and effective to this problem. The method was able to improve best known solutions of two benchmark instances used in the experiments.


Genetic algorithm Random key Tree hub problem Network design Logistics 


  1. 1.
    Abreu Júnior, J. C., Noronha, T. F., Santos, A. C.: O problema de localização de concentradores em árvores: um procedimento para acelerar um algoritmo baseado em decomposição de Benders. In XLVII Simpósio Brasileiro de Pesquisa Operacional (SBPO), page 9p., Porto de Galinhas, Brazil (2015)Google Scholar
  2. 2.
    Adler, N., Hashai, N.: Effect of open skies in the Middle East region. Trans. Res. Part A Policy Pract. 39(10), 878–894 (2005)Google Scholar
  3. 3.
    Alumur, S., Kara, B.Y.: Network hub location problems: The state of the art. Euro. J. Operat. Res. 190, 1–21 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beasley, J. E.: Population heuristics. In P. M. Pardalos and M. G. C. Resende, editors, Handbook of Applied Optimization, pages 168–183. Oxford University Press (2002)Google Scholar
  5. 5.
    Berman, O., Drezner, Z., Wesolowsky, G.O.: The transfer point location problem. Euro. J. Operat. Res. 179(3), 978–989 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, H., Campbell, A.M., Thomas, B.W.: Network design for time-constrained delivery. Naval Res. Logist. 55, 493–515 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coco, A. A., Noronha, T. F., Santos, A. C.: Algoritmo baseado em BRKGA para o problema de árvore geradora mínima robusta. In Proceedings of the XLV Simpósio Brasileiro de Pesquisa Operacional (SBPO), Natal, Brazil, pp 3658–3669 (2013)Google Scholar
  8. 8.
    Contreras, I., Fernández, E., Marín, A.: Tight bounds from a path based formulation for the tree of hub location problem. Comp. Operat. Res. 36(12), 3117–3127 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    Contreras, I., Fernández, E., Marín, A.: The tree of hubs location problem. Euro. J. Operat. Res. 2, 390–400 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Costa, T. F. G., Lohmann, G., Oliveira, A. V. M.: A model to identify airport hubs and their importance to tourism in Brazil. Res. Trans. Econ., 26(1):3–11. ISSN 0739-8859. Economics of Transport for Tourism (2010)Google Scholar
  11. 11.
    Cunha, C.B., Silva, M.R.: A genetic algorithm for the problem of configuring a hub-and-spoke network for a LTL trucking company in Brazil. Euro. J. Operat. Res. 179(3), 747–758 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Farahani, R.Z., Hekmatfar, M., Arabani, A.B., Nikbakhsh, E.: Hub location problems: a review of models, classification, solution techniques, and applications. Comp. Indust. Eng. 64(4), 1096–1109 (2013)CrossRefGoogle Scholar
  13. 13.
    D. B. M. M. Fontes and J. F. Gonçalves. A multi-population hybrid biased random key genetic algorithm for hop-constrained trees in nonlinear cost flow networks. Optimization Letters, 7(6):1303–1324. ISSN 1862-4472 (2013)Google Scholar
  14. 14.
    Gelareh, S., Nickel, S.: A Benders decomposition for hub location problems arising in public transport. In: Kalcsics, Jörg, Nickel, Stefan (eds.) Oper. Re. Procee. 2007. Operations research proceedings, vol. 2007, pp. 129–134. Springer, Berlin Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Gonçalves, J.F., Resende, M.G.C.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17, 487–525 (2011)CrossRefGoogle Scholar
  16. 16.
    Hakimi, S.L.: Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12(3), 450–459 (1964)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ishfaq, R., Sox, C.R.: Design of intermodal logistics networks with hub delays. Euro. J. Operat. Res. 220(3), 629–641 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Limbourg, S., Jourquin, B.: Optimal rail-road container terminal locations on the European network. Trans. Res. Part E Logist. Trans. Rev. 45(4), 551–563 (2009)CrossRefGoogle Scholar
  19. 19.
    O’Kelly, M.E.: A quadratic integer program for the location of interacting hub facilities. Euro. J. Operat. Res. 32, 393–404 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Resende, M.G.C.: Biased random-key genetic algorithms with applications in telecommunications. TOP 20, 120–153 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Resende, M.G.C., Martí, R., Gallego, M., Duarte, A.: GRASP and path-relinking for the max-min diversity problem. Comp. Operat. Res. 37, 498–508 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ribeiro, C.C., Uchoa, E., Werneck, R.F.: A hybrid GRASP with perturbations for the Steiner problem in graphs. INFORMS J. Comp. 14, 228–246 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ruiz, E., Albareda-Sambola, M., Fernández, E., Resende, M.G.C.: A biased random-key genetic algorithm for the capacitated minimum spanning tree problem. Comp. Operat. Res. 57, 95–108 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sá, E.M., Camargo, R.S., Miranda, G.: An improved Benders decomposition algorithm for the tree of hubs location problem. Euro. J. Operat. Res. 226(2), 185–202 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sá, E.M., Contreras, I., Cordeau, J.F.: Exact and heuristic algorithms for the design of hub networks with multiple lines. Euro. J. Operat. Res. 246(1), 186–198 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Spears, W. M., DeJong, K. A.: On the virtues of parameterized uniform crossover. In Proceedings of the Fourth International Conference on Genetic Algorithms, pp 230–236 (1991)Google Scholar
  27. 27.
    Wang, J.J., Cheng, M.C.: From a hub port city to a global supply chain management center: A case study of Hong Kong. J. Trans. Geograph 18(1), 104–115 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Luciana S. Pessoa
    • 1
  • Andréa C. Santos
    • 2
  • Mauricio G. C. Resende
    • 3
  1. 1.Department of Industrial EngineeringPUC-RioRio de JaneiroBrazil
  2. 2.ICD-LOSI, UMR CNRS 6281, Université de Technologie de TroyesTroyes CEDEXFrance
  3. 3.Mathematical Optimization and Planning (MOP), Amazon.comSeattleUSA

Personalised recommendations