Optimization Letters

, Volume 12, Issue 6, pp 1161–1178 | Cite as

An interior penalty method for a finite-dimensional linear complementarity problem in financial engineering

  • Song WangEmail author
  • Kai Zhang
Original Paper


In this work we study an interior penalty method for a finite-dimensional large-scale linear complementarity problem (LCP) arising often from the discretization of stochastic optimal problems in financial engineering. In this approach, we approximate the LCP by a nonlinear algebraic equation containing a penalty term linked to the logarithmic barrier function for constrained optimization problems. We show that the penalty equation has a solution and establish a convergence theory for the approximate solutions. A smooth Newton method is proposed for solving the penalty equation and properties of the Jacobian matrix in the Newton method have been investigated. Numerical experimental results using three non-trivial test examples are presented to demonstrate the rates of convergence, efficiency and usefulness of the method for solving practical problems.


Variational inequality Stochastic optimal control American option pricing HJB equation Linear complementarity problem Interior penalty method 



Kai Zhang wishes to thank the supports from the Philosophy and Social Science Program of Guangdong Province (Grant No. GD13YYJ01) and the MOE Project of Key Research institute of Humanities and Social Sciences at Universities (Grant No. 14JJD790041). Project 11001178 partially supported by National Natural Science Foundation of China.


  1. 1.
    Angermann, L., Wang, S.: Convergence of a fitted finite volume method for the penalized Black–Scholes equation governing European and American Option pricing. Numer. Math. 106, 1–40 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bensoussan, A., Lions, J.L.: Applications of Variational Inequalities in Stochastic Control. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978)zbMATHGoogle Scholar
  3. 3.
    Chen, W., Wang, S.: A penalty method for a fractional order parabolic variational inequality governing American put option valuation. Comput. Math. Appl. 67, 77–90 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, W., Wang, S.: A finite difference method for pricing European and American options under a geometric Levy process. J. Ind. Manag. Optim. 11, 241–264 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Courtadon, G.: A more accurate finite difference approximation for the valuation of options. J. Finan. Econ. Quant. Anal. 17, 697–703 (1982)CrossRefGoogle Scholar
  6. 6.
    Damgaard, A.: Computation of reservation prices of options with proportional transaction costs. J. Econ. Dyn. Control 30, 415–444 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Daryina, A.N., Izmailov, A.F., Solodov, M.V.: A class of active-set Newton methods for mixed complementarity problems. SIAM J. Optim. 36, 409–429 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Davis, M.H.A., Zariphopoulou, T.: American Options and Transaction Fees. In: Davis M., Duffie, D., Fleming W.H., Shreve S. (eds.) Mathematical Finance. Springer-Verlag (1995)Google Scholar
  9. 9.
    Duffy, D.: Finite Difference Methods in Financial Engineering–A Partial Differential Equation Approach. Wiley, Chichester (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Facchinei, F., Pang, J.S.: Finite-dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. I & II. Springer-Verlag, New York (2003)zbMATHGoogle Scholar
  11. 11.
    Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44, 525–597 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York (1984)CrossRefzbMATHGoogle Scholar
  14. 14.
    Khaliq, A.Q.M., Voss, D.A., Kazmi, S.H.K.: A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach. J. Bank. Finan. 30, 489–502 (2006)CrossRefGoogle Scholar
  15. 15.
    Huang, C.C., Wang, S.: A power penalty approach to a nonlinear complementarity problem. Oper. Res. Lett. 38, 72–76 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Huang, C.C., Wang, S.: A penalty method for a mixed nonlinear complementarity problem. Nonlinear Anal. 75, 588–597 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kanzow, C.: Global optimization techniques for mixed complementarity problems. J. Glob. Optim. 16, 1–21 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  19. 19.
    Lesmana, D.C., Wang, S.: An upwind finite difference method for a nonlinear Black–Scholes equation governing European option valuation under transaction costs. Appl. Math. Comput. 219, 8811–8828 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Li, W., Wang, S.: Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. J. Ind. Manag. Optim. 9, 365–398 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, W., Wang, S.: A numerical method for pricing European options with proportional transaction costs. J. Glob. Optim. 60, 59–78 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, D., Fukushima, M.: Smoothing Newton and Quasi-Newton methods for mixed complementarity problems. Comput. Optim. Appl. 17, 203–230 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nielsen, B.F., Skavhaug, O., Tveito, A.: Penalty and front-fixing methods for the numerical solution of American option problems. J. Comp. Fin. 5, 69–97 (2001)CrossRefGoogle Scholar
  24. 24.
    Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, New York, London (1970)zbMATHGoogle Scholar
  25. 25.
    Potra, F.A., Ye, Y.: Interior-point methods for nonlinear complementarity problems. J. Optim. Theor. App. 88, 617–642 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Seydel, R.: Tools for Computational Finance, 5th edn. Springer Verlag, London (2012)CrossRefzbMATHGoogle Scholar
  27. 27.
    Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Engelwood Cliffs, NJ (1962)zbMATHGoogle Scholar
  28. 28.
    Wang, S.: A novel fitted finite volume method for the Black–Scholes equation governing option pricing. IMA J. Numer. Anal. 24, 699–720 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, S.: A power penalty method for a finite-dimensional obstacle problem with derivative constraints. Optim. Lett. 8, 1799–1811 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, S.: A penalty approach to a discretized double obstacle problem with derivative constraints. J. Glob. Optim. 62, 775–790 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wang, S., Yang, X.Q.: A power penalty method for linear complementarity problems. Oper. Res. Lett. 36, 211–214 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wang, S., Yang, X.Q.: A power penalty method for a bounded nonlinear complementarity problem. Optimization 64, 2377–2394 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wang, S., Yang, X.Q., Teo, K.L.: Power penalty method for a linear complementarity problem arising from American option valuation. J. Optim. Theory App. 129, 227–254 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wang, S., Zhang, S., Fang, Z.: A superconvergent fitted finite volume method for Black–Scholes equations governing European and American option valuation. Numer. Partial Differ. Equ. 31, 1190–1208 (2015)CrossRefzbMATHGoogle Scholar
  35. 35.
    Wilmott, P., Dewynne, J., Howison, S.: Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford (1993)zbMATHGoogle Scholar
  36. 36.
    Yamashita, M., Fukushima, M.: On stationary points of the implicit Lagrangian for nonlinear complementarity problems. J. Optim. Theory Appl. 84, 653–663 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhang, K., Wang, S.: Convergence property of an interior penalty approach to pricing American option. J. Ind. Manag. Optim. 7, 435–447 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zhang, K., Wang, S.: Pricing American bond options using a penalty method. Automatica 48, 472–479 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsCurtin UniversityPerthAustralia
  2. 2.Business SchoolShenzhen UniversityShenzhenChina

Personalised recommendations