Optimization Letters

, Volume 11, Issue 3, pp 597–608 | Cite as

On the convergence rate of grid search for polynomial optimization over the simplex

  • Etienne de Klerk
  • Monique Laurent
  • Zhao Sun
  • Juan C. Vera
Original Paper


We consider the approximate minimization of a given polynomial on the standard simplex, obtained by taking the minimum value over all rational grid points with given denominator \({r} \in \mathbb {N}\). It was shown in De Klerk et al. (SIAM J Optim 25(3):1498–1514, 2015) that the accuracy of this approximation depends on r as \(O(1/r^2)\) if there exists a rational global minimizer. In this note we show that the rational minimizer condition is not necessary to obtain the \(O(1/r^2)\) bound.


Polynomial optimization Grid search Convergence rate  Taylor’s theorem 


  1. 1.
    Ausiello, G., D’Atri, A., Protasi, M.: Structure preserving reductions among convex optimization problems. J. Comput. Syst. Sci. 21(1), 136–153 (1980)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: The complexity of approximating a nonlinear program. Math. Program. 69(1), 429–441 (1995)MathSciNetMATHGoogle Scholar
  3. 3.
    Bomze, I.M., De Klerk, E.: Solving standard quadratic optimization problems via semidefinite and copositive programming. J. Global Optim. 24(2), 163–185 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bomze, I.M., Gollowitzer, S., Yildirim, E.A.: Rounding on the standard simplex: Regular grids for global optimization. J. Global Optim. 59(2–3), 243–258 (2014)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bos, L.P.: Bounding the Lebesque function for Lagrange interpolation in a simplex. J. Approx. Theory 38, 43–59 (1983)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)Google Scholar
  7. 7.
    De Klerk, E., Laurent, M., Parrilo, P.: A PTAS for the minimization of polynomials of fixed degree over the simplex. Theoret. Comput. Sci. 361(2–3), 210–225 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    De Klerk, E., Laurent, M., Sun, Z.: An alternative proof of a PTAS for fixed-degree polynomial optimization over the simplex. Math. Program. 151(2), 433–457 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    De Klerk, E., Laurent, M., Sun, Z.: An error analysis for polynomial optimization over the simplex based on the multivariate hypergeometric distribution. SIAM J. Optim. 25(3), 1498–1514 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Faybusovich, L.: Global optimization of homogeneous polynomials on the simplex and on the sphere. In: Floudas, C., Pardalos, P. (eds.) Frontiers in Global Optimization, pp. 109–121. Kluwer Academic Publishers, Boston (2004)Google Scholar
  11. 11.
    Nesterov, Yu.: Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper 2003/71, CORE-UCL (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Etienne de Klerk
    • 1
  • Monique Laurent
    • 2
  • Zhao Sun
    • 3
  • Juan C. Vera
    • 1
  1. 1.Tilburg UniversityTilburgNetherlands
  2. 2.Centrum Wiskunde and Informatica (CWI)Amsterdam and Tilburg University, CWIAmsterdamNetherlands
  3. 3.Canada Excellence Research Chair in “Data Science for Real-time Decision making”École Polytechnique de MontréalMontréalCanada

Personalised recommendations