Optimization Letters

, Volume 10, Issue 7, pp 1379–1392 | Cite as

An improved two-stage optimization-based framework for unequal-areas facility layout

  • Miguel F. AnjosEmail author
  • Manuel V. C. Vieira
Original Paper


The unequal-areas facility layout problem is concerned with finding the optimal arrangement of a given number of non-overlapping indivisible departments with unequal area requirements within a facility. We present an improved optimization-based framework for efficiently finding competitive solutions for this problem. The framework is based on the combination of two mathematical optimization models. The first model is a nonlinear approximation of the problem that establishes the relative position of the departments within the facility, and the second model is an exact convex optimization formulation of the problem that determines the final layout. Aspect ratio constraints on the departments are taken into account by both models. Our computational results show that the proposed framework is computationally efficient and consistently produces competitive, and often improved, layouts for well-known instances from the literature as well as for new large-scale instances with up to 100 departments.


Facility layout Nonlinear optimization 



The first author’s research was partially supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. The second author’s research was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project PEstOE/MAT/UI0297/2014 (Centro de Matemática e Aplicações).


  1. 1.
    Armour, G.C., Buffa, E.S.: A Heuristic algorithm and simulation approach to relative location of facilities. Manag. Sci. 9, 294–309 (1963)CrossRefGoogle Scholar
  2. 2.
    Anjos, M.F., Vannelli, A.: An attractor-repeller approach to floor planning. Math. Methods Oper. Res. 56(1), 3–27 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Anjos, M.F., Vannelli, A.: A new mathematical-programming framework for facility-layout design. INFORMS J. Comput. 18(1), 111–118 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bazaraa, M.S.: Computerized layout design: a branch and bound approach. AIIE Trans. 7(4), 432–438 (1975)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bernardi, S., Anjos, M.F.: A two-stage mathematical-programming method for the multi-floor facility layout problem. J. Oper. Res. Soc. 64, 352–364 (2013)CrossRefGoogle Scholar
  6. 6.
    Bozer, Y.A., Meller, R.D.: A reexamination of the distance-based facility layout problem. IIE Trans. 29(7), 549–560 (1997)Google Scholar
  7. 7.
    Bozer, Y.A., Wang, C.-T.: A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem. Eur. J. Oper. Res. 218, 382–391 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brimberg, J., Juel, H., Körner, M.C., Schöbel, A.: Locating an axis-parallel rectangle on a Manhattan plane. TOP 22, 185–207 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Castillo, I., Westerlund, T.: An \(\varepsilon \)-accurate model for optimal unequal-area block layout design. Comput. Oper. Res. 32(3), 429–447 (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout design problems with unequal areas: a comparison of MILP and MINLP optimization methods. Comput. Chem. Eng. 30(1), 54–69 (2005)CrossRefGoogle Scholar
  11. 11.
    Etawil, H., Areibi, S., Vannelli, A.: Attractor-repeller approach for global placement. In: Proceedings of the 1999 IEEE/ACM International Conference on Computer-Aided Design, pp. 20–24 (1999)Google Scholar
  12. 12.
    Foulds, L.R.: Graph Theory Applications. Springer-Verlag, New York (1991)zbMATHGoogle Scholar
  13. 13.
    Gau, K.Y., Meller, R.D.: An iterative facility layout algorithm. Int. J. Prod. Res. 37(16), 3739–3758 (1999)CrossRefzbMATHGoogle Scholar
  14. 14.
    Jankovits, I., Luo, C., Anjos, M.F., Vannelli, A.: A convex optimisation framework for the unequal-areas facility layout problem. Eur. J. Oper. Res. 214, 199–215 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kalcsics, J.: Districting problems. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds.) Location Science. Springer International Publishing, Switzerland (2015)Google Scholar
  16. 16.
    Kim, J.G., Kim, Y.D.: A space partitioning method for facility layout problems with shape constraints. IIE Trans. 30(10), 947–957 (1998)Google Scholar
  17. 17.
    Kochhar, J.S., Foster, B.T., Heragu, S.S.: Hope: a genetic algorithm for the unequal area facility layout problem. Comput. Oper. Res. 25, 583–594 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kulturel-Konak, S., Konak, A.: Linear programming based genetic algorithm for the unequal area facility layout problem. Int. J. Prod. Res. 51(14), 4302–4324 (2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    Luo, C., Anjos, M.F., Vannelli, A.: A nonlinear optimization methodology for VLSI fixed-outline floorplanning. J. Comb. Optim. 16(4), 378–401 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, Q., Meller, R.D.: A sequence-pair representation and MIP-model-based heuristic for the facility layout problem with rectangular departments. IIE Trans. 39(4), 377–394 (2007)CrossRefGoogle Scholar
  21. 21.
    Mavridou, T.D., Pardalos, P.M.: Simulated annealing and genetic algorithms for the facility layout problem: a survey. Comput. Optim. Appl. 7(1), 111–126 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Meller, R.D., Chen, W., Sherali, H.D.: Applying the sequence-pair representation to optimal facility layout designs. Oper. Res. Lett. 35(5), 651–659 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Meller, R.D., Narayanan, V., Vance, P.H.: Optimal facility layout design. Oper. Res. Lett. 23, 117–127 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Montreuil, B.: A modeling framework for integrating layout design and flow network design. In: Proceedings of the material handling research colloquium, pp. 43–58 (1990)Google Scholar
  25. 25.
    Nugent, C.E., Vollmann, T.E., Ruml, J.: An experimental comparison of techniques for the assignment of facilities to locations. Oper. Res. 16(1), 150–173 (1968)CrossRefGoogle Scholar
  26. 26.
    Sherali, H.D., Fraticelli, B.M.P., Meller, R.D.: Enhanced model formulation for optimal facility layout. Oper. Res. 51(4), 629–644 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Singh, S.P., Sharma, R.R.K.: A review of different approaches to the facility layout problems. Int. J. Adv. Manuf. Technol. 30(5–6), 425–433 (2006)CrossRefGoogle Scholar
  28. 28.
    Tam, K.Y.: Genetic algorithms, function optimization, and facility layout design. Eur. J. Oper. Res. 63, 322–346 (1992)CrossRefzbMATHGoogle Scholar
  29. 29.
    van Camp, D.J., Carter, M.W., Vannelli, A.: A nonlinear optimization approach for solving facility layout problems. Eur. J. Oper. Res. 57, 174–189 (1991)CrossRefzbMATHGoogle Scholar
  30. 30.
    Xie, W., Sahinidis, N.V.: A branch-and-bound-algorithm for the continuous facility layout problem. Comput. Chem. Eng. 32, 1016–1028 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.GERAD and Polytechnique MontrealMontrealCanada
  2. 2.Departamento de Matemática, Faculdade de Ciências e Tecnologia & CMAUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations