Optimization Letters

, Volume 11, Issue 2, pp 329–341

Clustering and maximum likelihood search for efficient statistical classification with medium-sized databases

Original Paper

Abstract

This paper addresses the problem of insufficient performance of statistical classification with the medium-sized database (thousands of classes). Each object is represented as a sequence of independent segments. Each segment is defined as a random sample of independent features with the distribution of multivariate exponential type. To increase the speed of the optimal Kullback–Leibler minimum information discrimination principle, we apply the clustering of the training set and an approximate nearest neighbor search of the input object in a set of cluster medoids. By using the asymptotic properties of the Kullback–Leibler divergence, we propose the maximal likelihood search procedure. In this method the medoid to check is selected from the cluster with the maximal joint density (likelihood) of the distances to the previously checked medoids. Experimental results in image recognition with artificially generated dataset and Essex facial database prove that the proposed approach is much more effective, than an exhaustive search and the known approximate nearest neighbor methods from FLANN and NonMetricSpace libraries.

Keywords

Statistical classification Approximate nearest neighbor method Image recognition Kullback–Leibler discrimination Exponential family 

References

  1. 1.
    Aggarwal, C.: Data Mining: The Textbook. Springer, New York (2015)CrossRefMATHGoogle Scholar
  2. 2.
    Andoni, A., Indyk, P.: Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’06, pp. 459–468 (2006)Google Scholar
  3. 3.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45(6), 891–923 (1998)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beis, J.S., Lowe, D.G.: Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1000–1006 (1997)Google Scholar
  5. 5.
    Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: a network approach. Comput. Oper. Res. 33(11), 3171–3184 (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Boytsov, L., Naidan, B.: Engineering Efficient and Effective Non-metric Space Library. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) Similarity and Applications, Lecture Notes in Computer Science, vol. 8199, pp. 280–293. Springer, Berlin (2013)Google Scholar
  7. 7.
    Bustos, B., Navarro, G., Chvez, E.: Pivot selection techniques for proximity searching in metric spaces. Pattern Recognit. Lett. 24(14), 2357–2366 (2003)CrossRefMATHGoogle Scholar
  8. 8.
    Cayton, L.: Efficient Bregman range search. In: Bengio, Y., Schuurmans, D., Lafferty, J.D., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 22, pp. 243–251. Curran Associates, Inc. (2009)Google Scholar
  9. 9.
    Chen, S., Zhang, D., Zhou, Z.H.: Enhanced (PC)2a for face recognition with one training image per person. Pattern Recognit. Lett. 25(10), 1173–1181 (2004)CrossRefGoogle Scholar
  10. 10.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 886–893 (2005)Google Scholar
  11. 11.
    Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20(4), 364–366 (1977)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Eick, C.F., Zeidat, N.: Using supervised clustering to enhance classifiers. In: Hacid, M.S., Murray, N.V., Ra, Z.W., Tsumoto, S. (eds.) Foundations of Intelligent Systems, Lecture Notes in Computer Science, vol. 3488, pp. 248–256. Springer, Berlin (2005)Google Scholar
  13. 13.
    Gonzalez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)CrossRefGoogle Scholar
  14. 14.
    Guarracino, M.R., Chinchuluun, A., Pardalos, P.M.: Decision rules for efficient classification of biological data. Optim. Lett. 3(3), 357–366 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kullback, S.: Information Theory and Statistics. Dover Publications, Mineola (1997)MATHGoogle Scholar
  16. 16.
    Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses, 3rd edn. Springer, New York (2008)MATHGoogle Scholar
  17. 17.
    Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition, 2nd edn. Springer, New York (2011)Google Scholar
  18. 18.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  19. 19.
    Mic, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern Recognit. Lett. 15(1), 9–17 (1994)CrossRefGoogle Scholar
  20. 20.
    Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach. Chapman and Hall/CRC, Boca Raton (2005)CrossRefMATHGoogle Scholar
  21. 21.
    Mladenovic, N., Brimberg, J., Hansen, P., Moreno-Perez, J.A.: The p-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISAPP International Conference on Computer Vision Theory and Applications, pp. 331–340 (2009)Google Scholar
  23. 23.
    Prince, S.: Computer Vision: Models, Learning, and Inference. Cambridge University Press, New York (2012)CrossRefMATHGoogle Scholar
  24. 24.
    Sabo, K., Scitovski, R., Vazler, I.: One-dimensional center-based l 1-clustering method. Optim. Lett. 7(1), 5–22 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Savchenko, A.V.: Directed enumeration method in image recognition. Pattern Recognit. 45(8), 2952–2961 (2012)CrossRefGoogle Scholar
  26. 26.
    Savchenko, A.V.: Real-time image recognition with the parallel directed enumeration method. In: Chen, M., Leibe, B., Neumann, B. (eds.) Computer Vision Systems, Lecture Notes in Computer Science, vol. 7963, pp. 123–132. Springer, Berlin (2013)Google Scholar
  27. 27.
    Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)Google Scholar
  28. 28.
    Syed, M.N., Pardalos, P.M., Principe, J.C.: On the optimization properties of the correntropic loss function in data analysis. Optim. Lett. 8(3), 823–839 (2013)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708 (2014)Google Scholar
  30. 30.
    Takci, H., Gungor, T.: A high performance centroid-based classification approach for language identification. Pattern Recognit. Lett. 33(16), 2077–2084 (2012)CrossRefGoogle Scholar
  31. 31.
    Tan, X., Chen, S., Zhou, Z.H., Zhang, F.: Face recognition from a single image per person: a survey. Pattern Recognit. 39(9), 1725–1745 (2006)CrossRefMATHGoogle Scholar
  32. 32.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, Burlington (2008)MATHGoogle Scholar
  33. 33.
    Wang, X., Li, Z., Zhang, L., Yuan, J.: Grassmann Hashing for approximate nearest neighbor search in high dimensional space. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2011)Google Scholar
  34. 34.
    Yodkhad, P., Kawewong, A., Patanukhom, K.: Approximate nearest neighbor search using self-organizing map clustering for face recognition system. In: International Computer Science and Engineering Conference (ICSEC), pp. 151–156 (2014)Google Scholar
  35. 35.
    Zhang, N., Yang, J., Qian, J.J.: Component-based global k-NN classifier for small sample size problems. Pattern Recognit. Lett. 33(13), 1689–1694 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratory of Algorithms and Technologies for Network AnalysisNational Research University Higher School of EconomicsNizhny NovgorodRussia

Personalised recommendations