Optimization Letters

, Volume 10, Issue 3, pp 511–525 | Cite as

Heuristic solutions for the vehicle routing problem with time windows and synchronized visits

Original Paper

Abstract

We present a simulated annealing based algorithm for a variant of the vehicle routing problem (VRP), in which a time window is associated with each client service and some services require simultaneous visits from different vehicles to be accomplished. The problem is called the VRP with time windows and synchronized visits. The algorithm features a set of local improvement methods to deal with various objectives of the problem. Experiments conducted on the benchmark instances from the literature clearly show that our method is fast and outperforms the existing approaches. It produces all known optimal solutions of the benchmark in very short computational times, and improves the best results for the rest of the instances.

Keywords

Vehicle routing Synchronization Destruction/repair Local search Simulated annealing 

References

  1. 1.
    Afifi, S., Dang, D.C., Moukrim, A.: A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints. In: Proceedings of LION-7, Lecture Notes in Computer Science, vol. 7997, pp. 259–265 (2013)Google Scholar
  2. 2.
    Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1(2), 131–137 (1972)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Baños, R., Ortega, J., Gil, C., Márquez, A.L., De Toro, F.: A hybrid meta-heuristic for multi-objective vehicle routing problems with time windows. Comput. Ind. Eng. 65(2), 286–296 (2013)CrossRefGoogle Scholar
  4. 4.
    Baños, R., Ortega, J., Gil, C., Fernandez, A., De Toro, F.: A simulated annealing-based parallel multi-objective approach to vehicle routing problems with time windows. Expert Syst. Appl. 40(5), 1696–1707 (2013)CrossRefGoogle Scholar
  5. 5.
    Bouly, H., Dang, D.C., Moukrim, A.: A memetic algorithm for the team orienteering problem. 4OR 8(1), 49–70 (2009)CrossRefGoogle Scholar
  6. 6.
    Bredström, D., Rönnqvist, M.: A branch and price algorithm for the combined vehicle routing and scheduling problem with synchronization constraints. NHH Dept of Finance and Management Science Discussion Paper (2007)Google Scholar
  7. 7.
    Bredström, D., Rönnqvist, M.: Combined vehicle routing and scheduling with temporal precedence and synchronization constraints. Eur. J. Oper. Res. 191(1), 19–31 (2008)CrossRefMATHGoogle Scholar
  8. 8.
    Chiang, W.C., Russell, R.A.: Simulated annealing metaheuristics for the vehicle routing problem with time windows. Ann. Oper. Res. 63(1), 3–27 (1996)CrossRefMATHGoogle Scholar
  9. 9.
    Czech, Z., Czarnas, P.: Parallel simulated annealing for the vehicle routing problem with time windows. In: Proceedings of 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing (2002)Google Scholar
  10. 10.
    Dang, D.C., Guibadj, R.N., Moukrim, A.: An effective PSO-inspired algorithm for the team orienteering problem. Eur. J. Oper. Res. 229(2), 332–344 (2013)CrossRefGoogle Scholar
  11. 11.
    Dohn, A., Rasmussen, M.S., Larsen, J.: The Vehicle Routing Problem with Time Windows and Temporal Dependencies. Networks 58(4), 273–289 (2011)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Drexl, M.: Synchronization in vehicle routing a survey of VRPs with multiple synchronization constraints. Transp. Sci. 46(3), 297–316 (2012)CrossRefGoogle Scholar
  13. 13.
    El Hachemi, N., Gendreau, M., Rousseau, L.M.: A heuristic to solve the synchronized log-truck scheduling problem. Comput. Oper. Res. 40(3), 666–673 (2013)CrossRefGoogle Scholar
  14. 14.
    Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Ioachim, I., Desrosiers, J., Soumis, F., Bélanger, N.: Fleet assignment and routing with schedule synchronization constraints. Eur. J. Oper. Res. 119(1), 75–90 (1999)CrossRefMATHGoogle Scholar
  16. 16.
    Kirkpatrick, S., Vecchi, M., et al.: Optimization by simmulated annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Lenstra, J.K., Kan, A.: Complexity of vehicle routing and scheduling problems. Networks 11(2), 221–227 (1981)CrossRefGoogle Scholar
  18. 18.
    Li, Y., Lim, A., Rodrigues, B.: Manpower allocation with time windows and job-teaming constraints. Nav. Res. Logist. (NRL) 52(4), 302–311 (2005)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Potvin, J.Y., Kervahut, T., Garcia, B.L., Rousseau, J.M.: The vehicle routing problem with time windows part I: tabu search. INFORMS J. Comput. 8(2), 158–164 (1996)CrossRefMATHGoogle Scholar
  20. 20.
    Rasmussen, M.S., Justesen, T., Dohn, A., Larsen, J.: The home care crew scheduling problem: Preference-based visit clustering and temporal dependencies. Eur. J. Oper. Res. 219(3), 598–610 (2012)CrossRefMATHGoogle Scholar
  21. 21.
    Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Solomon, M.M., Desrosiers, J.: Time window constrained routing and scheduling problems. Transp. Sci. 22, 1–13 (1988)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Tavakkoli-Moghaddam, R., Gazanfari, M., Alinaghian, M., Salamatbakhsh, A., Norouzi, N.: A new mathematical model for a competitive vehicle routing problem with time windows solved by simulated annealing. J. Manuf. Syst. 30(2), 83–92 (2011)CrossRefGoogle Scholar
  24. 24.
    Toth, P., Vigo, D.: An overview of vehicle routing problems. Veh. Routing Probl. 9, 1–26 (2002)CrossRefGoogle Scholar
  25. 25.
    Van Breedam, A.: Improvement heuristics for the vehicle routing problem based on simulated annealing. Eur. J. Oper. Res. 86(3), 480–490 (1995)CrossRefMATHGoogle Scholar
  26. 26.
    Wen, M., Larsen, J., Clausen, J., Cordeau, J.F., Laporte, G.: Vehicle routing with cross-docking. J. Oper. Res. Soc. 60(12), 1708–1718 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Sorbonne universités, Université de Technologie de Compiègne, CNRS, Heudiasyc UMR 7253, CS 60319Compiègne cedexFrance
  2. 2.ASAP Research Group, School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations