Optimization Letters

, Volume 11, Issue 6, pp 1069–1089 | Cite as

General Variable Neighborhood Search for computing graph separators

  • Jesús Sánchez-Oro
  • Nenad Mladenović
  • Abraham DuarteEmail author
Original Paper


Computing graph separators in networks has a wide range of real-world applications. For instance, in telecommunication networks, a separator determines the capacity and brittleness of the network. In the field of graph algorithms, the computation of balanced small-sized separators is very useful, especially for divide-and-conquer algorithms. In bioinformatics and computational biology, separators are required in grid graphs providing a simplified representation of proteins. This papers presents a new heuristic algorithm based on the Variable Neighborhood Search methodology for computing vertex separators. We compare our procedure with the state-of-the-art methods. Computational results show that our procedure obtains the optimum solution in all of the small and medium instances, and high-quality results in large instances.


Combinatorial optimization Metaheuristics VNS  Graph separators 



This research has been partially supported by the Spanish Ministry of “Economía y Competitividad”, Grant Ref. TIN2012-35632-C02-02.


  1. 1.
    Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings, and graph partitionings. In: 36th Annual Symposium on the Theory of Computing, pp. 222–231 (2004)Google Scholar
  2. 2.
    Bhatt, S.N., Leighton, F.T.: A framework for solving VLSI graph layout problems. J. Comput. Syst. Sci. 28, 300–343 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Biha M.D., Meurs, M.J.: An exact algorithm for solving the vertex separator problem. J. Glob. Optim. 49, 425–434 (2011)Google Scholar
  4. 4.
    Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42, 153–159 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Duarte, A., Escudero, L.F., Martí, R., Mladenović, N., Pantrigo, J.J., Sánchez-Oro, J.: Variable neighborhood search for the vertex separation problem. Comput. Oper. Res. 39(12), 3247–3255 (2012)Google Scholar
  6. 6.
    Feige, U., Kogan, S.: Hardness of approximation of the balanced complete bipartite subgraph problem. Technical report MCS04-04, Department of Computer Science and Applied Math., The Weizmann Institute of Science (2004)Google Scholar
  7. 7.
    Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for minimum-weight vertex separators. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 563–572 (2005)Google Scholar
  8. 8.
    Fu, B., Chen, Z.: Sublinear time width-bounded separators and their application to the protein side-chain packing problem. In: Algorithmic Aspects in Information and Management, LNCS, vol. 4041, pp. 149–160 (2006)Google Scholar
  9. 9.
    Hansen, P., Mladenović, N., Moreno, J.A.: Variable neighborhood search: methods and applications. Ann. Oper. Res. 175(1), 367–407 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Leighton, F.T.: Complexity Issues in VLSI: Optimal Layout for the Shuffle-Exchange Graph and Other Networks. MIT Press, Cambridge (1983)Google Scholar
  11. 11.
    Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46, 787–832 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Leiserson, C.: Area-efficient graph layouts (for VLSI). In: 21th Annual Symposium on Foundations of Computer Science. IEEE Computer Soc., Los Alamitos, pp. 270–280 (1980)Google Scholar
  13. 13.
    Lipton, R.J., Tarjan, R.J.: A separator theorem for planar graphs. SIAM J. Appl. Math 36, 177–189 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lozano, M., Duarte, A., Gortázar, F., Martí, R.: Variable neighborhood search with ejection chains for the antibandwidth problem. J. Heuristics 18, 919–938 (2012)Google Scholar
  16. 16.
    Martí, R., Moreno-Vega, J.M., Duarte, A.: Advanced multi-start methods. In: Gendreau, M., Potvin, J-Y. (eds.) Handbook of Metaheuristics, vol. 146, pp. 265–281. Springer (2010)Google Scholar
  17. 17.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Montemayor, A.S., Duarte, A., Pantrigo, J.J., Cabido, R.: High-performance VNS for the Max-cut problem using commodity graphics hardware. In: Mini-Euro Conference on VNS (MECVNS 05), Tenerife (Spain), pp. 1–11 (2005)Google Scholar
  19. 19.
    Pardo, E.G., Mladenović, N., Pantrigo, J.J., Duarte, A.: Variable formulation search for the cutwidth minimization problem. Appl. Soft Comput. 13, 2242–2252 (2013)CrossRefzbMATHGoogle Scholar
  20. 20.
    Sánchez-Oro, J., Pantrigo, J.J., Duarte, A.: Balancing intensification and diversification strategies in VNS. An application to the Vertex Separation Problem. Technical Report. Dept. Ciencias de la Computación. Universidad Rey Juan Carlos (2013)Google Scholar
  21. 21.
    de Souza, C., Balas, E.: The vertex separator problem: algorithms and computations. Math. Progr. 103, 609–631 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hansen, P., Mladenović, N.: Variable neighborhood search. Int. Ser. Oper. Res. Manag. Sci. 57, 145–184 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jesús Sánchez-Oro
    • 1
  • Nenad Mladenović
    • 2
  • Abraham Duarte
    • 1
    Email author
  1. 1.Dpto. de Ciencias de la ComputaciónUniversidad Rey Juan CarlosMóstolesSpain
  2. 2.LAMIH, Université de ValenciennesValenciennesFrance

Personalised recommendations