Advertisement

Optimization Letters

, Volume 11, Issue 6, pp 1047–1056 | Cite as

A general variable neighborhood search variants for the travelling salesman problem with draft limits

  • Raca Todosijević
  • Anis Mjirda
  • Marko Mladenović
  • Saïd Hanafi
  • Bernard Gendron
Original Paper

Abstract

In this paper, we present two general variable neighborhood search (GVNS) based variants for solving the traveling salesman problem with draft limits (TSPDL), a recent extension of the traveling salesman problem. TSPDL arises in the context of maritime transportation. It consists of finding optimal Hamiltonian tour for a given ship which has to visit and deliver products to a set of ports while respecting the draft limit constraints. The proposed methods combine ideas in sequential variable neighborhood descent within GVNS. They are tested on a set of benchmarks from the literature as well as on a new one generated by us. Computational experiments show remarkable efficiency and effectiveness of our new approach. Moreover, new set of benchmarks instances is generated.

Keywords

Maritime transportation Traveling salesman problem with draft limits Sequential variable neighborhood descent General variable neighborhood search 

Notes

Acknowledgments

This work was supported by the Centre National de la Recherche Scientifique (CNRS), by the Campus interdisciplinaire de recherche, d’innovation technologique et de formation Internationale sur la Sécurité et l’Intermodalité des Transports (CISIT), and by the Laboratoire d’Automatique, de Mécanique et d’Informatique industrielles et Humaines (LAMIH) of the Université de Valenciennes et du Hainaut-Cambrésis.

References

  1. 1.
    Battara, M., Pessoa, A.A., Subramanian, A., Uchoa, E.: Exact algorithms for the travelling salesman problem with draft limits. Eur. J. Oper. Res. doi: 10.1016/j.ejor.2013.10.042
  2. 2.
    Hansen, P., Mladenović, N., Moreno-Pérez, J.A.: Variable neighbourhood search: methods and applications. 4OR 6, 319–360 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hansen, P., Mladenović, N., Moreno-Pérez, J.A.: Variable neighbourhood search: methods and applications. Ann. Oper. Res. 175, 367–407 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study in local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. Wiley, New York (1995)Google Scholar
  5. 5.
    Mjirda, A., Jarboui, B., Macedo, R., Hanafi, S., Mladenović, N.: A two phase variable neighborhood search for the multi-product inventory routing problem. Comput. Oper. Res. doi: 10.1016/j.cor.2013.06.006i
  6. 6.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mladenović, N., Todosijević, R., Urosević, D.: An efficient General variable neighborhood search for large TSP problem with time windows. Yugosl. J. Oper. Res. 22, 141–151 (2012)zbMATHGoogle Scholar
  8. 8.
    Mladenović, N., Todosijević, R., Urosević, D.: Two level General variable neighborhood search for Attractive traveling salesman problem. Comput. Oper. Res. doi: 10.1016/j.cor.2013.04.015
  9. 9.
    Mladenović, N., Urosević, D., Hanafi, A., Ilić, A.: A General variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem. Eur. J. Oper. Res. 220, 270–285 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mladenović, N., Urosević, N., Hanafi, S.: Variable neighborhood search for the travelling deliveryman problem. 4OR 11, 57–73 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Panchamgam, K., Xiong, Y., Golden, B., Dussault, B., Wasil, E.: The hierarchical traveling salesman problem. Optim. Lett. 7, 1–8 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rakke, J.G., Christiansen, M., Fagerholt, K., Laporte, G.: The travelling salesman problem with draft limits. Comput. Oper. Res. 39, 2162–2167 (2012)zbMATHGoogle Scholar
  13. 13.
    Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Yadlapalli, S., Rathinam, S., Darbha, S.: 3-Approximation algorithm for a two depot, heterogeneous traveling salesman problem. Optim. Lett. 6, 141–152 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Raca Todosijević
    • 1
  • Anis Mjirda
    • 1
  • Marko Mladenović
    • 1
  • Saïd Hanafi
    • 1
  • Bernard Gendron
    • 2
  1. 1.LAMIH-UVHCLe Mont Houy Valenciennes, Cedex 9France
  2. 2.CIRRELTUniversité de MontréalQuébecCanada

Personalised recommendations