Optimization Letters

, Volume 9, Issue 4, pp 769–777 | Cite as

Local maximum points of explicitly quasiconvex functions

Original Paper


This work concerns generalized convex real-valued functions defined on a nonempty convex subset of a real topological linear space. Its aim is twofold: first, to show that any local maximum point of an explicitly quasiconvex function is a global minimum point whenever it belongs to the intrinsic core of the function’s domain and second, to characterize strictly convex normed spaces by applying this property for a particular class of convex functions.


Local maximum point Relative algebraic interior Convex function Explicitly quasiconvex function Strictly convex space Least squares problem 


  1. 1.
    Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: quasi relative interiors and duality theory. Math. Program. 57, 15–48 (1992)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Boţ, R.I., Csetnek, E.R.: Regularity conditions via generalized interiority notions in convex optimization: new achievements and their relation to some classical statements. Optimization 61, 35–65 (2012)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cambini, A., Martein, L.: Generalized Convexity and Optimization. Theory and Applications. Springer, Berlin (2009)MATHGoogle Scholar
  4. 4.
    Greenberg, H.J., Pierskalla, W.P.: A review of quasi-convex functions. Oper. Res. 19, 1553–1570 (1971)CrossRefMATHGoogle Scholar
  5. 5.
    Karamardian, S.: Strictly quasi-convex (concave) functions and duality in mathematical programming. J. Math. Anal. Appl. 20, 344–358 (1967)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Martos, B.: The direct power of adjacent vertex programming methods. Manag. Sci. 12, 241–255 (1965)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Ponstein, J.: Seven kinds of convexity. SIAM Rev. 9, 115–119 (1967)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Phohomsiri, P.: On the extrema of linear least-squares problems. J. Optim. Theory Appl. 127, 665–669 (2005)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Computing and MathematicsUniversity of DerbyDerbyUK
  2. 2.Faculty of Mathematics and Computer ScienceBabeş-Bolyai University of Cluj-NapocaCluj-NapocaRomania

Personalised recommendations