Optimization Letters

, Volume 9, Issue 4, pp 635–661 | Cite as

An optimisation approach to constructing an exchange-traded fund

Original Paper

Abstract

In this paper we consider the problem of deciding the portfolio of assets that should underlie an exchange-traded fund (ETF). We formulate this problem as a mixed-integer nonlinear program. We consider ETFs which have positive leverage with respect to their benchmark index and ETFs which have negative leverage (inverse, short, ETFs). Our formulation is a flexible one that incorporates decisions as to both long and short positions in assets, as well as including rebalancing and transaction cost. Computational results are given for problems, derived from universes defined by S&P international equity indices, involving up to 1,200 assets.

Keywords

ETF Exchange-traded fund MINLP Mixed-integer nonlinear program Optimisation 

References

  1. 1.
    Alexander, C., Barbosa, A.: Hedging index exchange traded funds. J. Bank. Finance 32(2), 326–337 (2008)CrossRefGoogle Scholar
  2. 2.
    Avellaneda, M., Zhang, S.: Path-dependence of leveraged ETF returns. SIAM J. Financ. Math. 1(1), 568–603 (2010)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Beasley, J.E.: Portfolio optimisation: models and solution approaches. In: Topaloglu, H. (Ed) Tutorials in Operations Research, vol. 10, chapter 11, pp. 201–221. INFORMS, Catonsville, Maryland, USA (2013)Google Scholar
  4. 4.
    Beasley, J.E., Meade, N., Chang, T.-J.: An evolutionary heuristic for the index tracking problem. Eur. J. Oper. Res. 148(3), 621–643 (2003)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Boehmer, B., Boehmer, E.: Trading your neighbor’s ETFs: competition or fragmentation? J. Bank. Finance 27(9), 1667–1703 (2003)CrossRefGoogle Scholar
  6. 6.
    Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)MathSciNetGoogle Scholar
  7. 7.
    Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib—a collection of test models for mixed-integer nonlinear programming. Informs J. Comput. 15(1), 114–119 (2003)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bussieck, M.R., Vigerske, S.: MINLP solver software. In: Cochran, J.J., Cox Jr., L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (Eds.) Wiley Encyclopaedia of Operations Research and Management Science. Wiley, New York (2011). http://www2.mathematik.hu-berlin.de/~stefan/minlpsoft.pdf. Accessed 30 December 2013
  9. 9.
    Canakgoz, N.A., Beasley, J.E.: Mixed-integer programming approaches for index tracking and enhanced indexation. Eur. J. Oper. Res. 196(1), 384–399 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Chen, C., Kwon, R.H.: Robust portfolio selection for index tracking. Comput. Oper. Res. 39(4), 829–837 (2012)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Chiam, S.C., Tan, K.C., Al Mamun, A.: Dynamic index tracking via multi-objective evolutionary algorithm. Appl. Soft Comput. 13(7), 3392–3408 (2013)CrossRefGoogle Scholar
  12. 12.
    Deville, L.: Exchange traded funds: history, trading, and research. In: Zopounidis, C., Doumpos, M., Pardalos, P.M. (Eds.) Handbook of Financial Engineering, Optimization and its Applications, vol. 18, pp. 67–97. Springer, New York (2008)Google Scholar
  13. 13.
    Garcia, F., Guijarro, F., Moya, I.: The curvature of the tracking frontier: a new criterion for the partial index tracking problem. Math. Comput. Model. 54(7–8), 1781–1784 (2011)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Gastineau, G.L.: Exchange-traded funds: an introduction. And further likely evolution. J. Portfol. Manag. 27(3), 88–96 (2001)CrossRefGoogle Scholar
  15. 15.
    Giese, G.: On the risk-return profile of leveraged and inverse ETFs. J. Asset Manag. 11(4), 219–228 (2010)CrossRefGoogle Scholar
  16. 16.
    Guastaroba, G., Speranza, M.G.: Kernel search: an application to the index tracking problem. Eur. J. Oper. Res. 217(1), 54–68 (2012)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Haugh, M.B.: A note on constant proportion trading strategies. Oper. Res. Lett. 39(3), 172–179 (2011)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Jarrow, R.A.: Understanding the risk of leveraged ETFs. Finance Res. Lett. 7(3), 135–139 (2010)CrossRefGoogle Scholar
  19. 19.
    Kostovetsky, L.: Index mutual funds and exchange-traded funds: a comparison of two methods of passive investment. J. Portfol. Manag. 29(4), 80–92 (2003)CrossRefGoogle Scholar
  20. 20.
    Kupiec, P.H.: A survey of exchange-traded basket instruments. J. Financ. Serv. Res. 4(3), 175–190 (1990)CrossRefGoogle Scholar
  21. 21.
    Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A., Munson, T.: Minotaur solver. http://wiki.mcs.anl.gov/minotaur/index.php/MINOTAUR. Accessed 30 December 2013 (2013)
  22. 22.
    Mariani, M.C., Libbin, J.D., Martin, K.J., Ncheuguim, E., Varela, M.P.B., Mani, V.K., Erickson, C.A., Valles-Rosales, D.J.: Levy models and long correlations applied to the study of exchange traded funds. Int. J. Comput. Math. 86(6), 1040–1053 (2009)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Meade, N., Beasley, J.E.: Detection of momentum effects using an index out-performance strategy. Quant. Finance 11(2), 313–326 (2011)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Mezali, H., Beasley, J.E.: Quantile regression for index tracking and enhanced indexation. J. Oper. Res. Soc. 64(11), 1676–1692 (2013)CrossRefGoogle Scholar
  25. 25.
    MINLPLib: http://www.gamsworld.org/minlp/minlplib.htm. Accessed 30 December 2013 (2013)
  26. 26.
    Mittelmann, H.D.: Performance of commercial and noncommercial optimization software. In: Presented at INFORMS 2012 Phoenix, Arizona. http://plato.asu.edu/talks/phoenix.pdf. Accessed 30 December 2013
  27. 27.
    Poterba, J.M., Shoven, J.B.: Exchange-traded funds: a new investment option for taxable investors. Am. Econ. Rev. 92(2), 422–427 (2002)CrossRefGoogle Scholar
  28. 28.
    Roman, D., Mitra, G., Zverovich, V.: Enhanced indexation based on second-order stochastic dominance. Eur. J. Oper. Res. 228(1), 273–281 (2013)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Scozzari, A., Tardella, F., Paterlini, S., Krink, T.: Exact and heuristic approaches for the index tracking problem with UCITS constraints. Ann. Oper. Res. 205(1), 235–250 (2013)CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Wang, M., Xu, C., Xu, F., Xue, H.: A mixed 0–1 LP for index tracking problem with CVar risk constraints. Ann. Oper. Res. 196(1), 591–609 (2012)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Mathematical SciencesBrunel UniversityUxbridgeUK
  2. 2.Business SchoolImperial CollegeLondonUK
  3. 3.JB ConsultantsMordenUK

Personalised recommendations