Optimization Letters

, Volume 9, Issue 4, pp 731–741

# Projection onto simplicial cones by a semi-smooth Newton method

Original Paper

## Abstract

In this paper the problem of projection onto a simplicial cone is studied. By using Moreau’s decomposition theorem for projecting onto closed convex cones, the problem of projecting onto a simplicial cone is reduced to finding the unique solution of a nonsmooth system of equations. It is shown that a semi-smooth Newton method applied to the system of equations associated to the problem of projecting onto a simplicial cone is always well defined, and the generated sequence is bounded for any starting point and a formula for any accumulation point of this sequence is presented. It is also shown that under a somewhat restrictive assumption, the semi-smooth Newton method applied to the system of equations associated to the problem of projecting onto a simplicial cone has finite convergence. Besides, under a mild assumption on the simplicial cone, the generated sequence converges linearly to the solution of the associated system of equations.

## Keywords

Metric projection Simplicial cones Moreau’s decomposition theorem Semi-smooth Newton method

## Notes

### Acknowledgments

The first author was supported in part by FAPEG, CNPq Grants 471815/2012-8, 303732/2011-3 and PRONEX–Optimization(FAPERJ/CNPq). The authors wish to express their gratitude to the reviewers for their helpful comments and for a shorter, more elegant proof of Lemma 5.

## References

1. 1.
Abbas, M., Németh, S.Z.: Solving nonlinear complementarity problems by isotonicity of the metric projection. J. Math. Anal. Appl. 386(2), 882–893 (2012)
2. 2.
Al-Sultan, K.S., Murty, K.G.: Exterior point algorithms for nearest points and convex quadratic programs. Math. Program. 57(2, Ser. B), 145–161 (1992)
3. 3.
Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)
4. 4.
Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming. Theory and algorithms, 3rd edn. Wiley, Hoboken (2006)
5. 5.
Berk, R., Marcus, R.: Dual cones, dual norms, and simultaneous inference for partially ordered means. J. Am. Statist. Assoc. 91(433), 318–328 (1996)
6. 6.
Censor, Y., Elfving, T., Herman, G.T., Nikazad, T.: On diagonally relaxed orthogonal projection methods. SIAM J. Sci. Comput. 30(1), 473–504 (2007/08)
7. 7.
Censor, Y., Gordon, D., Gordon, R.: Component averaging: an efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Comput. 27(6), 777–808 (2001)
8. 8.
Chang, S.Y., Murty, K.G.: The steepest descent gravitational method for linear programming. Discrete Appl. Math. 25(3), 211–239 (1989)
9. 9.
Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in applied mathematics, vol. 2. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1990)Google Scholar
10. 10.
Dennis, J.E. Jr., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations, volume 16 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1996) (Corrected reprint of the 1983 original)Google Scholar
11. 11.
Deutsch, F., Hundal, H.: The rate of convergence of Dykstra’s cyclic projections algorithm: the polyhedral case. Numer. Funct. Anal. Optim. 15(5–6), 537–565 (1994)
12. 12.
Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Statist. Assoc. 78(384), 837–842 (1983)
13. 13.
Ekárt, A., Németh, A.B., Németh, S.Z.: Rapid heuristic projection on simplicial cones (2010) arXiv:1001.1928
14. 14.
Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles and Practice. Addison-Wesley systems programming series (1990)Google Scholar
15. 15.
Frick, H.: Computing projections into cones generated by a matrix. Biometrical J. 39(8), 975–987 (1997)
16. 16.
Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex analysis and minimization algorithms: Fundamentals. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], volume 305, Springer, Berlin (1993)Google Scholar
17. 17.
Hu, X.: An exact algorithm for projection onto a polyhedral cone. Aust. N. Z. J. Stat. 40(2), 165–170 (1998)
18. 18.
Huynh, T., Lassez, C., Lassez, J.-L.: Practical issues on the projection of polyhedral sets. Ann. Math. Artif. Intell. 6(4), 295–315 (1992). Artificial intelligence and mathematics, II
19. 19.
Isac, G., Németh, A.B.: Monotonicity of metric projections onto positive cones of ordered Euclidean spaces. Arch. Math. (Basel) 46(6), 568–576 (1986)
20. 20.
Isac, G., Németh, A.B.: Isotone projection cones in Euclidean spaces. Ann. Sci. Math. Québec 16(1), 35–52 (1992)
21. 21.
Liu, Z., Fathi, Y.: An active index algorithm for the nearest point problem in a polyhedral cone. Comput. Optim. Appl. 49(3), 435–456 (2011)
22. 22.
Liu, Z., Fathi, Y.: The nearest point problem in a polyhedral set and its extensions. Comput. Optim. Appl. 53(1), 115–130 (2012)
23. 23.
Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)
24. 24.
Ming, T., Guo-Liang, T., Hong-Bin, F., Kai Wang, Ng: A fast EM algorithm for quadratic optimization subject to convex constraints. Statist. Sinica 17(3), 945–964 (2007)
25. 25.
Moreau, J.J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. 255, 238–240 (1962)
26. 26.
Morillas, P.M.: Dykstra’s algorithm with strategies for projecting onto certain polyhedral cones. Appl. Math. Comput. 167(1), 635–649 (2005)
27. 27.
Murty, K.G.: Sigma Series in Applied Mathematics. Linear complementarity, linear and nonlinear programming. Heldermann, Berlin (1988)Google Scholar
28. 28.
Murty, K.G., Fathi, Y.: A critical index algorithm for nearest point problems on simplicial cones. Math. Program. 23(2), 206–215 (1982)
29. 29.
Németh, A.B., Németh, S.Z.: How to project onto an isotone projection cone. Linear Algebra Appl. 433(1), 41–51 (2010)
30. 30.
Németh, S.Z.: Characterization of latticial cones in Hilbert spaces by isotonicity and generalized infimum. Acta Math. Hungar. 127(4), 376–390 (2010)
31. 31.
Németh, S.Z.: Isotone retraction cones in Hilbert spaces. Nonlinear Anal. 73(2), 495–499 (2010)
32. 32.
Scolnik, H.D., Echebest, N., Guardarucci, M.T., Vacchino, M.C.: Incomplete oblique projections for solving large inconsistent linear systems. Math. Program. 111(1–2, Ser. B), 273–300 (2008)
33. 33.
Shusheng, X.: Estimation of the convergence rate of Dykstra’s cyclic projections algorithm in polyhedral case. Acta Math. Appl. Sinica (English Ser.) 16(2), 217–220 (2000)
34. 34.
Stewart, G.W.: On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Rev. 19(4), 634–662 (1977)
35. 35.
Ujvári, M.: On the projection onto a finitely generated cone, 2007, Preprint WP 2007–5. MTA SZTAKI, Laboratory of Operations Research and Decision Systems, Budapest (2007)Google Scholar