Optimization Letters

, Volume 8, Issue 8, pp 2155–2172 | Cite as

Acceleration strategies for the weight constrained shortest path problem with replenishment

  • Manuel A. Bolívar
  • Leonardo Lozano
  • Andrés L. Medaglia
Original Paper

Abstract

The weight constrained shortest path problem with replenishment (WCSPP-R) generalizes the constrained shortest path problem (CSP) and has multiple applications in transportation, scheduling, and telecommunications. We present an exact algorithm based on a recursive depth-first search that combines and extends ideas proposed in state-of-the-art algorithms for the CSP and the WCSPP-R. The novelty lies in a set of acceleration strategies that significantly improves the algorithm’s performance. We conducted experiments over large real-road networks with up to 6 million nodes and 15 million arcs, achieving speedups of up to 219 times against the state-of-the-art algorithm.

Keywords

Constrained shortest path problem replenishment large-scale networks 

References

  1. 1.
    Corneil, D.: Lexicographic breadth first search: A survey. Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, vol. 3353, pp. 1–19. Springer, Berlin, Heidelberg (2005)Google Scholar
  2. 2.
    Demetrescu, C., Goldberg, A., Johnson, D.: 9th DIMACS implementation challenge-shortest paths (2006). www.dis.uniroma1.it/challenge9/
  3. 3.
    Dongarra, J.J.: Performance of various computers using standard linear equations software. Technical report CS-89-85, University of Tennessee, USA (2013)Google Scholar
  4. 4.
    Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problem. Networks 42(3), 135–153 (2003)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path problem. Networks 10(4), 293–309 (1980)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Joksch, H.C.: The shortest route problem with constraints (shortest route problem with constraint, using set of nodes). J. Math. Anal. Appl. 14(2), 191–197 (1966)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27(1), 97–109 (1985)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Lozano, L., Medaglia, A.L.: On an exact method for the constrained shortest path problem. Comput. Oper. Res. 40(1), 378–384 (2013)CrossRefGoogle Scholar
  9. 9.
    Raith, A., Ehrgott, M.: A comparison of solution strategies for biobjective shortest path problems. Comput. Oper. Res. 36(4), 1299–1331 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Santos, L., Coutinho-Rodrigues, J., Current, J.R.: An improved solution algorithm for the constrained shortest path problem. Transp. Res. Part B: Methodol. 41(7), 756–771 (2007)CrossRefGoogle Scholar
  11. 11.
    Smith, O.J., Boland, N., Waterer, H.: Solving shortest path problems with a weight constraint and replenishment arcs. Comput. Oper. Res. 39(5), 964–984 (2012)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Manuel A. Bolívar
    • 1
  • Leonardo Lozano
    • 1
  • Andrés L. Medaglia
    • 1
  1. 1.Universidad de Los AndesBogotáColombia

Personalised recommendations