Advertisement

Optimization Letters

, Volume 8, Issue 7, pp 2111–2125 | Cite as

Discretization orders and efficient computation of cartesian coordinates for distance geometry

  • Douglas S. Gonçalves
  • Antonio Mucherino
Original Paper

Abstract

Distance geometry is a class of problems where the position of points in space is to be identified by using information about some relative distances between these points. Although continuous approaches are usually employed, problems belonging to this class can be discretized when some particular assumptions are satisfied. These assumptions strongly depend on the order in which the points to be positioned are considered. We discuss new discretization assumptions that are weaker than previously proposed ones, and present a greedy algorithm for an automatic identification of discretization orders. The use of these weaker assumptions motivates the development of a new method for computing point coordinates. Computational experiments show the effectiveness and efficiency of the proposed approaches when applied to protein instances.

Keywords

Distance geometry Combinatorial optimization Discretization orders Coordinate computation Molecular conformations 

Notes

Acknowledgments

We wish to thank Carlile Lavor and Leo Liberti for the fruitful comments to this paper. We are also thankful to Brittany Region (France) for financial support.

References

  1. 1.
    Alipanahi, B., Krislock, N., Ghodsi, A., Wolkowicz, H., Donaldson, L., Li, M.: Determining protein structures from noesy distance constraints by semidefinite programming. J. Comput. Biol. 20(4), 296–310 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  3. 3.
    Biswas, P., Lian, T., Wang, T., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sen. Netw. 2, 188–220 (2006)CrossRefGoogle Scholar
  4. 4.
    Cassioli, A., Günlük, O., Lavor, C., Liberti, L.: Discretization vertex orders in distance geometry, working paper (2014)Google Scholar
  5. 5.
    Coope, I.D.: Reliable computation of the points of intersection of \(n\) spheres in \(n\)-space. ANZIAM J. 42, 461–477 (2000)MathSciNetGoogle Scholar
  6. 6.
    Costa, V., Mucherino, A., Lavor, C., Carvalho, L.M., Maculan, N.: On suitable orders for discretizing molecular distance geometry problems related to protein side chains. In: IEEE Conference Proceedings, pp. 397–402. Workshop on Computational Optimization (WCO12), FedCSIS12, Wroclaw, Poland (2012)Google Scholar
  7. 7.
    Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. John Wiley & Sons, New York (1988)zbMATHGoogle Scholar
  8. 8.
    Gonçalves, D., Mucherino, A., Lavor, C.: Energy-based pruning devices for the bp algorithm for distance geometry. In: IEEE Conference Proceedings, pp. 335–340. Workshop on Computational Optimization (WCO13), FedCSIS13, Krakow, Poland (2013)Google Scholar
  9. 9.
    Grosso, A., Locatelli, M., Schoen, F.: Solving molecular distance geometry problems by global optimization algorithms. Comput. Optim. Appl. 43(1), 23–37 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lavor, C., Lee, J., John, A.L.S., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. 6(4), 783–796 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lavor, C., Liberti, L., Mucherino, A.: The interval branch-and-prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Glob. Optim. 56(3), 855–871 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Review 56(1), to appear (2014)Google Scholar
  14. 14.
    Linge, J.P., Nilges, M.: Influence of non-bonded parameters on the quality of nmr structures: a new force field for nmr structure calculation. J. Biomol. NMR 13(1), 51–59 (1999)CrossRefGoogle Scholar
  15. 15.
    Malliavin, T.E., Mucherino, A., Nilges, M.: Distance geometry in structural biology: new perspectives. In [19] pp. 329–350 (2013)Google Scholar
  16. 16.
    Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Glob. Optim. 15, 219–223 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Mucherino, A.: On the identification of discretization orders for distance geometry with intervals. In: Proceedings of Geometric Science of Information (GSI13). Lecture Notes in Computer Science 8085, pp. 231–238. France, Paris (2013)Google Scholar
  18. 18.
    Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6(8), 1671–1686 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods and Applications, p 410. Springer, New York (2013)Google Scholar
  20. 20.
    Thompson, H.B.: Calculation of cartesian coordinates and their derivatives from internal molecular coordinates. J. Chem. Phys. 47, 3407–3410 (1967)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.IRISAUniversity of Rennes 1RennesFrance

Personalised recommendations