Optimization Letters

, Volume 8, Issue 7, pp 2099–2110

Solving proximal split feasibility problems without prior knowledge of operator norms

Original Paper

Abstract

In this paper our interest is in investigating properties and numerical solutions of Proximal Split feasibility Problems. First, we consider the problem of finding a point which minimizes a convex function \(f\) such that its image under a bounded linear operator \(A\) minimizes another convex function \(g\). Based on an idea introduced in Lopez (Inverse Probl 28:085004, 2012), we propose a split proximal algorithm with a way of selecting the step-sizes such that its implementation does not need any prior information about the operator norm. Because the calculation or at least an estimate of the operator norm \(\Vert A\Vert \) is not an easy task. Secondly, we investigate the case where one of the two involved functions is prox-regular, the novelty of this approach is that the associated proximal mapping is not nonexpansive any longer. Such situation is encountered, for instance, in numerical solution to phase retrieval problem in crystallography, astronomy and inverse scattering Luke (SIAM Rev 44:169–224, 2002) and is therefore of great practical interest.

Keywords

Proximal split feasibility problems Moreau–Yosida approximate Prox-regularity 

Mathematics Subject Classification (2010)

49J53 65K10 49M37 90C25 

References

  1. 1.
    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bernard, F., Thibault, L.: Prox-regular functions in Hilbert spaces. J. Math. Anal. Appl. 303, 1–14 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brézis, H.: Analyse fonctionnelle, théorie et applications. Masson, Paris (1983)MATHGoogle Scholar
  4. 4.
    Byrne, Ch.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Byrne, C.H., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)MathSciNetMATHGoogle Scholar
  6. 6.
    Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)CrossRefGoogle Scholar
  7. 7.
    Chaux, C., Combettes, P.L., Pesquet, J.-C., Wajs, V.R.: A variational formulation for frame-based inverse problems. Inverse Probl. 23, 1495–1518 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Clarke, Z.F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)MATHGoogle Scholar
  9. 9.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lopez, G., Martin-Marquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Luke, D.R., Burke, J.V., Lyon, R.G.: Optical wavefront reconstruction: theory and numerical methods. SIAM Rev. 44, 169–224 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Luke, D.R.: Finding best approximation pairs relative to a convex and prox-regular set in Hilbert space. SIAM J. opt. 19(2), 714–729 (2008)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mallat, S.G.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, New York (1999)MATHGoogle Scholar
  14. 14.
    Moudafi, A.: Split Monotone Variational Inclusions. J. Optim. Theory Appl. 150(2), 275–283 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Moudafi, A.: A proximal iterative approach to a nonconvex optimization problem. Nonlinear Anal. Theory Methods Appl. 72, 704–709 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348, 1805–1838 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Polyak, B.T.: Introduction to Optimization. Optimization Software Inc., New York (1987)Google Scholar
  19. 19.
    Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Berlin (1988)Google Scholar
  20. 20.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877898 (1976)Google Scholar
  21. 21.
    Xu, H.K.: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)CrossRefMATHGoogle Scholar
  22. 22.
    Xu, H.-K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl. 26(10), article 105018 (2010)Google Scholar
  23. 23.
    Yao, Y., Chen, R., Marino, G., Liou, Y.C.: Applications of fixed point and optimization methods to the multiple-sets split feasibility problem. J. Appl. Math. 2012 Article ID 927530 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Ceregmia-Département scientifiqueUniversité des Antilles et de la GuyaneSchoelcherMartinique
  2. 2.School of Studies in MathematicsPt. Ravishankar Shukla UniversityRaipurIndia

Personalised recommendations