Advertisement

Optimization Letters

, Volume 8, Issue 4, pp 1443–1451 | Cite as

Two-dedicated-machine scheduling problem with precedence relations to minimize makespan

  • Evgeny GafarovEmail author
  • Alexandre Dolgui
Original Paper

Abstract

Two-dedicated-parallel-machine scheduling problem with precedence constraints to minimize makespan is considered. This problem originally appeared as a sub-problem in assembly line balancing but it has also its own applications. Complexity and approximation results for this scheduling problem and its special cases with chains of jobs or equal-processing-times are presented.

Keywords

Parallel machine scheduling Complexity Assembly line balancing 

Notes

Acknowledgments

The work was partially supported by Saint-Etienne Méetropole, France and Labex IMOBS3. The authors thanks also Chris Yukna for his help with English.

References

  1. 1.
    Lushchakova, I.N., Strusevich, V.A.: Scheduling incompatible tasks on two machines. Eur. J. Oper. Res. 200(2), 334–346 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Lawler, E.L., Lenstra, J.K., Rinnoy Kan, A.H.G., Shmoys, D.B.: Sequencing and Scheduling: Algorithms and Complexity, Report BS-8909, Stichting Matematisch Centrum, Amsterdam (1989)Google Scholar
  3. 3.
    Lin, S.F., Chen, J.Y.: Two parallel machines scheduling. Syst. Anal. Model. Simul. 42(10), 1429–1437 (2002)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bartholdi, J.: Balancing two-sided assembly lines: a case study. Int. J. Prod. Res. 31, 2447–2461 (1993)CrossRefGoogle Scholar
  5. 5.
    Tapkan, P., Ozbakir, L., Baykasoglu, A.: Bees algorithm for constrained fuzzy multi-objective two-sided assembly line balancing problem. Optim. Lett. 39(9–10), 1009–1015 (2007)Google Scholar
  6. 6.
    Hadda, H., Dridi, N., Hajri-Gabouj, S.: A note on the two-stage hybrid flow shop problem with dedicated machines. Optim. Lett. (2011). doi: 10.1007/s11590-011-0365-4
  7. 7.
    Aloulou, M.A., Kovalyov, M.Y., Portmann, M.-C.: Maximization problems in single machine scheduling. Ann. Oper. Res. 129, 21–32 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Rekiek, B., Dolgui, A., Delchambre, A., Bratcu, A.: State of art of assembly lines design optimization. Annu. Rev. Control 26(2), 163–174 (2002)CrossRefGoogle Scholar
  9. 9.
    Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur. J. Oper. Res. 168(3), 666–693 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Baybars, I.: A survey of exact algorithms for the simple assembly line balancing. Manag. Sci. 32, 909–932 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gafarov, E.R., Dolgui, A.: Hard Special Case and Other Complexity Results for SALBP-1. Research Report LIMOS UMR CNRS 6158 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Ecole Nationale Superieure des MinesCNRS UMR6158, LIMOSSaint-EtienneFrance
  2. 2.Institute of Control Sciences of the Russian Academy of SciencesMoscowRussia

Personalised recommendations