Optimization Letters

, Volume 8, Issue 4, pp 1375–1387 | Cite as

Service network design models for two-tier city logistics

Original Paper


This paper focuses on two-tier city logistics systems for advanced management of urban freight activities and, in particular, on the first layer of such systems where freight is moved from distribution centers on the outskirts of the city to satellite platforms by urban vehicles, from where it will be distributed to customers by a different fleet of dedicated vehicles. We address the issue of planning the services of this first tier system, that is, select services, their routes and schedules, and determine the itineraries of the customer-demand flows through these facilities and services. We propose a general scheduled service network design modelling framework that captures the fundamental concepts related to the definition of urban-vehicle tactical plans within a two-tier distribution network. We examine several operational assumptions regarding the management of the urban-vehicle fleet and the flexibility associated with the delivery of goods, and show how the proposed modelling framework can evolve to represent an increasing level of detail. A discussion of algorithmic perspectives completes the paper.


City logistics Scheduled service network design Urban freight transportation Fixed charge multicommodity network design Asset management 


  1. 1.
    Andersen, J., Crainic, T.G., Christiansen, M.: Service network design with asset management: formulations and comparative analyses. Transp. Res. Part C 17, 197–207 (2009)CrossRefGoogle Scholar
  2. 2.
    Caramia, M., Sgalambro, A.: An exact approach for the maximum concurrent k-splittable flow problem. Optim. Lett. 2, 251–265 (2008)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Caramia, M., Sgalambro, A.: On the approximation of the single source k-splittable flow problem. J. Discrete Algorithms 6(2), 277–289 (2008)Google Scholar
  4. 4.
    Caramia, M., Sgalambro, A.: A fast heuristic algorithm for the maximum concurrent k-splittable flow problem. Optim. Lett. 4, 37–55 (2010)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Chouman, M., Crainic, T.G.: A MIP-tabu search hybrid framework for multicommodity capacitated fixed-charge network design. Tech. Rep. CIRRELT-2010-31, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et les transports, Université de Montréal, Montréal, QC, Canada (2010)Google Scholar
  6. 6.
    Chouman, M., Crainic, T.G.: Cutting-plane matheuristic for service network design with design-balanced requirements. Transp. Sci. (2013)Google Scholar
  7. 7.
    Chouman, M., Crainic, T.G., Gendron, B.: Commodity representations and cutset-based inequalities for multicommodity capacitated fixed charge network design. Tech. Rep. CIRRELT-2011-56, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et les transports, Université de Montréal, Montréal, QC, Canada (2011)Google Scholar
  8. 8.
    Costa, A.M.: A survey on benders decomposition applied to fixed-charge network design problems. Comput. Oper. Res. 32(6), 1429–1450 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Crainic, T., Mancini, S., Perboli, G., Tadei, R.: Multi-start heuristics for the two-echelon vehicle routing problem. In: Evolutionary computation in combinatorial optimization, vol. 6622, pp. 179–190 (2011)Google Scholar
  10. 10.
    Crainic, T.G.: Service network design in freight transportation. Eur. J. Oper. Res. 122, 272–288 (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Crainic, T.G., Frangioni, A., Gendron, B.: Bundle-based relaxation methods for multicommodity capacitated fixed charge network design. Discrete Appl. Math. 112(1–3), 73–99 (2001)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Crainic, T.G., Ricciardi, N., Storchi, G.: Models for evaluating and planning city logistics transportation systems. Transp. Sci. 43(4), 432–454 (2009)CrossRefGoogle Scholar
  13. 13.
    Crainic, T.G., Gendron, B., Hernu, G.: A slope scaling/Lagrangian perturbation heuristic with long-term memory for multicommodity capacitated fixed-charge network design. J. Heuristics 10(5), 525–545 (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Gamst, M., Petersen, B.: Comparing branch-and-price algorithms for the multi-commodity k-splittable maximum flow problem. Eur. J. Oper. Res. 217(2), 278–286 (2012)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ghamlouche, I., Crainic, T.G., Gendreau, M.: Cycle-based neighbourhoods for fixed-charge capacitated multicommodity network design. Oper. Res. 51(4), 655–667 (2003)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Hemmelmayr, V.C., Cordeau, J.F., Crainic, T.G.: An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Comput. Oper. Res. 39(12), 3215–3228 (2012)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hewitt, M., Nemhauser, G.L., Savelsbergh, M.W.P.: Combining exact and heuristic approaches for the capacitated fixed-charge network flow problem. INFORMS J. Comput. 22(2), 314–325 (2010)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Jepsen, M., Spoorendonk, S., Ropke, S.: A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem. Transp. Sci. 47, 23–37 (2013)CrossRefGoogle Scholar
  19. 19.
    Katayama, N., Chen, M., Kubo, M.: A capacity scaling heuristic for the multicommodity capacitated network design problem. J. Comput. Appl. Math. 232(1), 90–101 (2009)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Pedersen, M.B., Crainic, T.G., Madsen, O.B.G.: Models and tabu search metaheuristics for service network design with asset-balance requirements. Transp. Sci. 43(2), 158–177 (2009)CrossRefGoogle Scholar
  21. 21.
    Perboli, G., Tadei, R., Vigo, D.: The two-echelon capacitated vehicle routing problem: models and math-based heuristics. Transp. Sci. 45(4), 364–380 (2011)CrossRefGoogle Scholar
  22. 22.
    Rodríguez-Martín, I., José Salazar-González, J.: A local branching heuristic for the capacitated fixed-charge network design problem. Comput. Oper. Res. 37(3), 575–581 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Centre Interuniversitaire de Recherche sur les Réseaux d’Entreprise, la Logistique et le Transport (CIRRELT)Université du Québec à MontréalMontréalCanada
  2. 2.Istituto per le Applicazioni del Calcolo “Mauro Picone”Consiglio Nazionale delle RicercheRomeItaly

Personalised recommendations