Optimization Letters

, Volume 8, Issue 2, pp 777–799

Scheduling problems in transportation networks of line topology

  • Dariusz R. Kowalski
  • Eyal Nussbaum
  • Michael Segal
  • Vitaly Milyeykovsky
Original Paper

Abstract

In this paper we consider online scheduling problems for linear topology under various objective functions: minimizing the maximum completion time, minimizing the largest delay, and minimizing the sum of completion times. We give optimal solutions for uni-directional version of the problem for each of the objectives and show that for the two-directional versions of each problem, no online algorithm can deterministically achieve the optimal solution for any of the considered objective functions. We also propose 2-approximation on-line algorithms for the MinMakespan and the MinSum minimization objectives. We also prove that no online algorithm can deterministically achieve the optimal solution for any of the considered objective functions for the weighted case of uni-directional scenarios.

Keywords

Scheduling Linear network Online algorithms 

References

  1. 1.
    Adler, M., Khanna, S., Rajaraman, R., Rosen, A.: Time-constrained scheduling of weighted packets on trees and meshes. Algorithmica 36, 123–152 (2003)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Adler, M., Rosenberg, A.L., Sitaraman, R.K., Unger, W.: Scheduling time-constrained communication in linear networks. In: Proceedings of 10th ACM Symposium on Parallel Algorithms and Architectures, pp. 269–278 (1998)Google Scholar
  3. 3.
    Bermond, J.-C., Nisse, N., Reyes, P., Rivano, H.: Minimum delay data gathering in radio networks. Ad-Hoc, Mobile and Wireless Networks, Lecture Notes in Computer Science, vol. 5793, pp. 69–82 (2009)Google Scholar
  4. 4.
    Klasing, R., Korteweg, P., Stougie, L., Marchetti-Spaccamela, A.: Data gathering in wireless networks. In: Graphs and Algorithms in Communication Networks, Springer Monograph, Springer, Berlin (2009)Google Scholar
  5. 5.
    Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An approximation algorithm for the wireless gathering problem. Oper. Res. Lett. 36(5), 605–608 (2008)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Busch, C., Magdon-Ismail, M., Mavronicolas, M., Wattenhofer, R.: Near-Optimal Hot-Potato Routing on Trees. Euro-Par, pp. 820–827 (2004)Google Scholar
  7. 7.
    Cidon, I., Kutten, S., Mansour, Y., Peleg, D.: Greedy Packet Scheduling. SIAM J. Comput. 24(1), 148–157 (1995)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Gargano, L.: Time optimal gathering in sensor networks. Proc. Struct. Inform. Commun. Complexity 4474, 7–10 (2007)CrossRefGoogle Scholar
  9. 9.
    Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling in O(congestion + dilation) steps. Combinatorica 14(2), 167–180 (1994)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Li, C.-L., McCormick, S.T., Simchi-Levi, D.: The complexity of finding two disjoint paths with min-max objective function. Discrete Appl. Math. 26(1), 105–115 (1990)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Leighton, F.T., Maggs, B.M., Richa, A.: Fast algorithms for finding O(Congestion + Dilation) packet routing schedules. Combinatorica 19(3), 375–401 (1999)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Leung, Y-T, J., Tam, T., Young, G.: On-line routing of real-time messages. J. Parallel Distrib. Comput. 34, 211–217 (1996)Google Scholar
  13. 13.
    Liu, K.-S., Zaks, S.: Scheduling in synchronous networks and the greedy algorithm. Theor. Comput. Sci. 220(1), 157–183 (1999)CrossRefGoogle Scholar
  14. 14.
    Mansour, Y., Patt-Shamir, B.: Greedy packet scheduling on shortest paths. J. Algorithms 14, 449–465 (1993)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Ostrovsky, R., Rabani, Y.: Universal \(O\)(congestion + dilation + \(\log ^{1+\varepsilon }N\)) local control packet switching algorithms. In: Proceedings of ACM Symposium on Theory of Computing, pp. 644–653 (1997)Google Scholar
  16. 16.
    Peis, B., Skutella, M., Wiese, A.: “Packet routing on the grid”, in LATIN 2010. LNCS 6034, 120–130 (2010)Google Scholar
  17. 17.
    Rabani, Y., Tardos, E.: Distributed packet switching in arbitrary networks. In: Proceedings of ACM Symposium on the Theory of Computing, pp. 366–375 (1996)Google Scholar
  18. 18.
    Revah, Y., Segal, M.: Improved algorithms for data-gathering time in sensor networks II: ring, tree, and grid Topologies. Int. J. Distri. Sens. Netw. 5, 463–479 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dariusz R. Kowalski
    • 1
  • Eyal Nussbaum
    • 2
  • Michael Segal
    • 2
  • Vitaly Milyeykovsky
    • 2
  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Communication Systems Engineering DepartmentBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations