Advertisement

Optimization Letters

, Volume 8, Issue 2, pp 705–714 | Cite as

Memetic self-adaptive evolution strategies applied to the maximum diversity problem

  • Alan Robert Resende de FreitasEmail author
  • Frederico Gadelha Guimarães
  • Rodrigo César Pedrosa Silva
  • Marcone Jamilson Freitas Souza
Original Paper

Abstract

The maximum diversity problem consists in finding a subset of elements which have maximum diversity between each other. It is a very important problem due to its general aspect, that implies many practical applications such as facility location, genetics, and product design. We propose a method based on evolution strategies with local search and self-adaptation of the parameters. For all time limits from 1 to 300 s as well as for time to converge to the best solutions known, this method leads to better results when compared to other state-of-the-art algorithms.

Keywords

Maximum diversity problem Metaheuristics Memetic self-adaptive evolution strategies Evolutionary algorithms 

Notes

Acknowledgments

We sincerely thank the reviewers for their valuable contribution to this paper. This work has been supported by the Brazilian agencies CAPES, CNPq, and FAPEMIG; and the Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme.

References

  1. 1.
    Agrafiotis, D.K.: Stochastic algorithms for maximizing molecular diversity. J. Chem. Inf. Comput. Sci. 37(5), 841–851 (1997). doi: 10.1021/ci9700337 Google Scholar
  2. 2.
    Aringhieri, R., Bruglieri, M., Cordone, R.: Optimal results and tight bounds for the maximum diversity problem. Found. Comput. Decision Sci. 34(2), 73–86 (2009)zbMATHGoogle Scholar
  3. 3.
    Aringhieri, R., Cordone, R.: Comparing local search metaheuristics for the maximum diversity problem. J. Operational Res. Soc. 62(2), 266–280 (2011)CrossRefGoogle Scholar
  4. 4.
    Back, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, USA (1996)Google Scholar
  5. 5.
    Berretta, R., Moscato, P.: New ideas in optimization chap. The number partitioning problem: an open challenge for evolutionary computation? pp. 261–278. McGraw-Hill Ltd., UK, Maidenhead, UK, England (1999). http://dl.acm.org/citation.cfm?id=329055.329082
  6. 6.
    Brimberg, J., Mladenovic, N., Urosevic, D., Ngai, E.: Variable neighborhood search for the heaviest-subgraph. Comput. Operat. Res. 36(11), 2885–2891 (2009). doi: 10.1016/j.cor.2008.12.020 Google Scholar
  7. 7.
    Duarte, A., Marti, R.: Tabu search and grasp for the maximum diversity problem. Eur. J. Operational Res. 178(1), 71–84 (2007). doi: 10.1016/j.ejor.2006.01.021 Google Scholar
  8. 8.
    Ghosh, J.B.: Computational aspects of the maximum diversity problem. Operat. Res. Lett. 19(4), 175–181 (1996). doi: 10.1016/0167-6377(96)00025-9
  9. 9.
    Glover, F., Kuo, C., Dhir, K.: Heuristic algorithms for the maximum diversity problem. J. Inf. Optimization Sci. 19(1), 109–132 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Hansen, P., Mladenović, N.: First vs. best improvement: an empirical study. Discrete Appl. Math. 154(5), 802–817 (2006). doi: 10.1016/j.dam.2005.05.020
  11. 11.
    Kuo, C.C., Glover, F., Dhir, K.S.: Analyzing and modeling the maximum diversity problem by zero-one programming. Decision Sci. 24(6), 1171–1185 (1993). doi: 10.1111/j.1540-5915.1993.tb00509.x Google Scholar
  12. 12.
    Lozano, M., Molina, D., Garcí-a-Martí-nez, C.: Iterated greedy for the maximum diversity problem. Eur. J. Operational Res. 214(1), 31–38 (2011). doi: 10.1016/j.ejor.2011.04.018 Google Scholar
  13. 13.
    Martí, R., Gallego, M., Duarte, A.: A branch and bound algorithm for the maximum diversity problem. Eur. J. Operational Res. 200(1), 36–44 (2010). doi: 10.1016/j.ejor.2008.12.023
  14. 14.
    Martí, R., Gallego, M., Duarte, A., Pardo, E.: Heuristics and metaheuristics for the maximum diversity problem. J. Heuristics 1–25 (2011). doi: 10.1007/s10732-011-9172-4
  15. 15.
    Palubeckis, G.: Iterated tabu search for the maximum diversity problem. Appl. Math. Comput. 189(1), 371–383 (2007). doi: 10.1016/j.amc.2006.11.090 Google Scholar
  16. 16.
    Resende, M., Martí, R., Gallego, M., Duarte, A.: Grasp and path relinking for the max-min diversity problem. Comput. Operat. Res. 37(3), 498–508 (2010). doi: 10.1016/j.cor.2008.05.011 (Metaheuristics)
  17. 17.
    Resende, M.G.C., Ribeiro, C.C., Glover, F., Martí, R.: Scatter search and path-relinking: Fundamentals, advances, and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, International Series in Operations Research and Management Science, vol. 146, pp. 87–107. Springer US (2010). doi: 10.1007/978-1-4419-1665-5_4
  18. 18.
    Silva, G., Ochi, L., Martins, S.: Experimental comparison of greedy randomized adaptive search procedures for the maximum diversity problem. In: Ribeiro, C., Martins, S. (eds.) Experimental and Efficient Algorithms, Lecture Notes in Computer Science, vol. 3059, pp. 498–512. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24838-5_37
  19. 19.
    Silva, G.C., Andrade, M.R., Ochi, L.S., Martins, S.L., Plastino, A.: New heuristics for the maximum diversity problem. J. Heuristics 13(4), 315–336 (2007). doi: 10.1007/s10732-007-9010-x Google Scholar
  20. 20.
    Wang, J., Zhou, Y., Cai, Y., Yin, J.: Learnable tabu search guided by estimation of distribution for maximum diversity problems. Soft Computing 16(4), 711–728 (2012). doi: 10.1007/s00500-011-0780-6 Google Scholar
  21. 21.
    Wang, J., Zhou, Y., Yin, J., Zhang, Y.: Competitive hopfield network combined with estimation of distribution for maximum diversity problems. Trans. Sys. Man Cyber. Part B 39(4), 1048–1066 (2009). doi: 10.1109/TSMCB.2008.2010220 Google Scholar
  22. 22.
    Weitz, R., Lakshminarayanan, S.: An empirical comparison of heuristic and graph theoretic methods for creating maximally diverse groups, vlsi design, and exam scheduling. Omega 25(4), 473–482 (1997). doi: 10.1016/S0305-0483(97)00007-8

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alan Robert Resende de Freitas
    • 1
    Email author
  • Frederico Gadelha Guimarães
    • 1
  • Rodrigo César Pedrosa Silva
    • 1
  • Marcone Jamilson Freitas Souza
    • 2
  1. 1.UFMGBelo HorizonteBrazil
  2. 2.UFOPOuro PretoBrazil

Personalised recommendations