Advertisement

Optimization Letters

, Volume 8, Issue 1, pp 237–246 | Cite as

Some results on the convexity of the closure of the domain of a maximally monotone operator

  • Jonathan M. Borwein
  • Liangjin YaoEmail author
Original Paper

Abstract

We provide a concise analysis about what is known regarding when the closure of the domain of a maximally monotone operator on an arbitrary real Banach space is convex. In doing so, we also provide an affirmative answer to a problem posed by Simons.

Keywords

Nearly convex set Fitzpatrick function Maximally monotone operator Monotone operator Set-valued operator 

Mathematics Subject Classification (2010)

Primary 47H05 Secondary 26B25 47A05 47B65 

Notes

Acknowledgments

The authors thank an anonymous referee for his/her pertinent comments. Jonathan Borwein and Liangjin Yao were both partially supported by the Australian Research Council.

References

  1. 1.
    Bauschke, H.H., Borwein, J.M., Wang, X., Yao, L.: Construction of pathological maximally monotone operators on non-reflexive Banach spaces. Set-Valued Var. Anal. 20, 387–415 (2012)Google Scholar
  2. 2.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Borwein, J.M.: Maximality of sums of two maximal monotone operators in general Banach space. Proc. Am. Math. Soc. 135, 3917–3924 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Borwein, J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4, 473–490 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Cambridge University Press, London (2010)zbMATHGoogle Scholar
  7. 7.
    Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, Berlin (2008)Google Scholar
  8. 8.
    Fitzpatrick S. Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988), Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59–65. Australian National University, Canberra (1988)Google Scholar
  9. 9.
    Marques, A.M., Svaiter, B.F.: Maximal monotone operators with a unique extension to the bidual. J. Convex Anal. 16, 409–421 (2009)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993)zbMATHGoogle Scholar
  11. 11.
    Rockafellar, R.T.: Local boundedness of nonlinear, monotone operators. Mich Math. J. 16, 397–407 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, 3rd Printing. Springer, Berlin (2009)Google Scholar
  14. 14.
    Simons, S.: Minimax and Monotonicity. Springer, Berlin (1998)Google Scholar
  15. 15.
    Simons, S.: Dualized and scaled Fitzpatrick functions. Proc. Am. Math. Soc. 134, 2983–2987 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Simons, S.: From Hahn-Banach to Monotonicity. Springer, Berlin (2008)zbMATHGoogle Scholar
  17. 17.
    Simons, S.: Maximal monotone multifunctions of Brøndsted-Rockafellar type. Set Valued Anal. 7, 255–294 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Verona, A., Verona, M.E.: Regular maximal monotone operators. Set Valued Anal. 6, 303–312 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Verona, A., Verona, M.E.: Regular maximal monotone operators and the sum theorem. J. Convex Anal. 7, 115–128 (2000)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Verona, A., Verona, M.E.: Regularity and the Brøndsted-Rockafellar properties of maximal monotone operators. Set Valued Anal. 14, 149–157 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Verona, A., Verona, M.E.: Regular maximal monotone multifunctions and enlargements. J. Convex Anal. 16, 1003–1009 (2009)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Voisei, M.D., Zălinescu, C.: Maximal monotonicity criteria for the composition and the sum under weak interiority conditions. Math. Progr (Series B) 123, 265–283 (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Yao, L.: The sum of a maximal monotone operator of type (FPV) and a maximal monotone operator with full domain is maximally monotone. Nonlinear Anal. 74, 6144–6152 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Yao, L.: On Monotone Linear Relations and the Sum Problem in Banach Spaces. Ph.D. thesis, Mathematics, University of British Columbia (Okanagan campus) (2011). http://hdl.handle.net/2429/39970
  25. 25.
    Yao, L.: The sum of a maximally monotone linear relation and the subdifferential of a proper lower semicontinuous convex function is maximally monotone. Set Valued Var. Anal. 20, 155–167 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Zălinescu, C.: Convex Anal. Gen. Vector Spaces. World Scientific Publishing, Singapore (2002)CrossRefGoogle Scholar
  27. 27.
    Zeidler, E.: Nonlinear Functional Analysis and its Application. Vol. II/A Linear Monotone Operators. Springer, Berlin (1990)CrossRefGoogle Scholar
  28. 28.
    Zeidler, E.: Nonlinear Functional Analysis and its Application II/B: Nonlinear Monotone Operators. Springer, Berlin (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CARMA, University of NewcastleNewcastleAustralia

Personalised recommendations