Optimization Letters

, Volume 7, Issue 7, pp 1419–1431 | Cite as

Multiobjective vehicle routing problem with fixed delivery and optional collections

  • Luciana P. Assis
  • André L. Maravilha
  • Alessandro Vivas
  • Felipe Campelo
  • Jaime A. Ramírez
Original Paper


We present an adaption on the formulation for the vehicle routing problem with fixed delivery and optional collections, in which the simultaneous minimization of route costs and of collection demands not fulfilled is considered. We also propose a multiobjective version of the iterated local search (MOILS). The performance of the MOILS is compared with the \(\epsilon \)-constrained (\(P_{\epsilon }\)) ILS, the NSGA-II and the indicator-based multi-objective local search methods in the solution of 14 problem instances containing between 50 and 199 customers plus the depot. The results indicate that the MOILS outperformed the other approaches, obtaining significantly better average values for coverage, hypervolume and cardinality.


Vehicle routing problem Selective pickups Iterated local search Multiobjective optimization  



This work was supported by the following agencies: National Council for Research and Development (CNPq), grants 306910/2006-3 and 472446/2010-0; the Coordination for the Improvement of Higher Education Personnel (CAPES); and the Research Foundation of the State of Minas Gerais (FAPEMIG, Brazil), grants Pronex: TEC 01075/09 and Pronem: CEX APQ-04611-10.


  1. 1.
    Batista, L.S., Campelo, F., Guimarães, F.G., Ramírez, J.A.: Pareto cone \(\epsilon \)-dominance: improving convergence and diversity in multiobjective evolutionary algorithms. Lect. Notes Comput Sci. (Springer) 6576, 76–90 (2011)Google Scholar
  2. 2.
    Batista, L.S., Campelo, F., Guimarães, F.G., Ramírez, J.A.: The cone \(\epsilon \)-dominance: an approach for evolutionary multiobjective optimization. Evol. Comput. (submitted)Google Scholar
  3. 3.
    Basseur, M., Liefooghe, A., Le, K., Burke, E.K.: The efficiency of indicator-based local search for multi-objective combinatorial optimization problems. J. Heuristics 18(2), 263–296 (2011)CrossRefGoogle Scholar
  4. 4.
    Chankong, V., Haimes, Y.Y.: Multiobjective decision making theory and methodology. Elsevier Science, New York (1983)Google Scholar
  5. 5.
    Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing: a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Crit. Decis. Anal. 3, 83–104 (1998)Google Scholar
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Dunn, O.J.: Multiple Comparisons Among Means. J. Am. Stat. Assoc. 56, 52–64 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3, 1–16 (1995)CrossRefGoogle Scholar
  9. 9.
    Gandibleux, X., Mezdaoui, N., Fréville, A.: A tabu search procedure to solve multiobjective combinatorial optimization problems. In: Caballero, R., Steuer, R. (eds.) Proceedings Volume of MOPGP 96. Springer, Berlin (1996)Google Scholar
  10. 10.
    Goh, C.K., Ong, Y.S., Tan, K.C.: Multiobjective memetic algorithms. Springer, Berlin (2009)Google Scholar
  11. 11.
    Gore, A.: Some nonparametric tests and selection procedures for main effects in two-way layouts. Ann. Inst. Stat. Math. 27(1), 487–500 (1973)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gendreau, M., Potvin, J.Y., Bräysy, O., Hasle, G., Løkketangen, A.: Metaheuristics for the vehicle routing problem and its extensions: a categorized bibliography. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem—Latest Advances and New Challenges. Springer, New York (2008)Google Scholar
  13. 13.
    Gribkovskaia, I., Laporte, G., Shyshou, A.: The single vehicle routing problem with deliveries and selective pickups. Comput. Oper. Res. 35, 2908–2924 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gutiérrez-Jarpa, G., Marianov, V., Obreque, C.: A single vehicle routing problem with fixed delivery and optional collections. IIE Trans. 41, 1067–1079 (2009)CrossRefGoogle Scholar
  15. 15.
    Gutiérrez-Jarpa, G., Desaulniers, G., Laporte, G., Marianov, V.: A branch-and-price algorithm for the vehicle routing problem with deliveries, selective pickups and time windows. Eur. J. Oper. Res. 206, 341–349 (2010)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hansen, M.P.: Tabu search for multiobjective optimization: MOTS. MCDM Conference (1997)Google Scholar
  17. 17.
    Hodges, J., Lehmann, E.: Estimation of location based on ranks. Ann. Math. Stat. 34, 598–611 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper. Res. 137(1), 50–71 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Jozefowiez, N., Semet, F., Talbi, E.G.: An evolutionary algorithm for the vehicle routing problem with route balancing. Eur. J. Oper. Res. 195(3), 761–769 (2007)CrossRefGoogle Scholar
  20. 20.
    Jozefowiez, N., Semet, F., Talbi, E.G.: Multi-objective vehicle routing problems. Eur. J. Oper. Res. 189(2), 293–309 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lee, T.-R., Ueng, J.-H.: A study of vehicle routing problem with load balancing. Int. J. Phys. Distrib. Logist. Manag. 29, 646–648 (1998)CrossRefGoogle Scholar
  22. 22.
    Lourenço H.R., Martin O.C., Stützle T.: Iterated local search. In: Glover F., Kochenberger G.A. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Boston (2003)Google Scholar
  23. 23.
    Montané, F.A.T., Galvão, R.D.: A tabu search algorithm for the vehicle routing problem with simultaneous pick-up and delivery service. Comput. Oper. Res. 33, 595–619 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Montgomery, D.: Design and analysis of experiments, 7th edn. Wiley, New York (2008)Google Scholar
  25. 25.
    Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Ann. Oper. Res. 41, 421–451 (1993)CrossRefzbMATHGoogle Scholar
  26. 26.
    Pacheco, J., Martí, R.: Tabu search for a multiobjective routing problem. J. Oper. Res. Soc. 57(1), 29–37 (2006)CrossRefzbMATHGoogle Scholar
  27. 27.
    Penna, P., Subramanian, A., Ochi, L.: An iterated local search heuristic for the heterogeneous fleet vehicle routing problem. J. Heuristics (2011). doi: 10.1007/s10732-011-9186-y
  28. 28.
    Ribeiro, R., Lourenco, H.R.: A multi-objective model for a multi-period distribution management problem. In: Metaheuristic International Conference (MIC), 97–101 (2001)Google Scholar
  29. 29.
    Salhi, S., Nagy, G.: A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling. J. Oper. Res. Soc. 50, 1034–1042 (1999)zbMATHGoogle Scholar
  30. 30.
    Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: International Conference on Genetic Algorithm and Their Applications (1985)Google Scholar
  31. 31.
    Serafini, P.: Simulated annealing for multi-objective optimization problems. In: Tzeng, G.H., Wang, H.F., Wen, V.P., Yu, P.L. (eds.) Multiple Criteria Decision Making. Expand and Enrich the Domains of Thinking and Application, pp. 283–292. Springer, Berlin (1994)Google Scholar
  32. 32.
    Subramanian, A., Drummond, L., Bentes, C., Ochi, L., Farias, R.: A parallel heuristic for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 37(11), 1899–1911 (2010)CrossRefzbMATHGoogle Scholar
  33. 33.
    Subramanian, A., Uchoa, E., Pessoa, A.A., Ochi, L.S.: Branch-and-cut with lazy separation for the vehicle routing problem with simultaneous pickup and delivery. Oper. Res. Lett. 39(5), 338–341 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Süral, H., Bookbinder, J.H.: The single-vehicle routing problem with unrestricted backhauls. Networks 41(3), 127–136 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a survey. J. Multi-Crit. Decis. Anal. 3, 83–104 (1994)CrossRefzbMATHGoogle Scholar
  36. 36.
    Ulungu, E.L., Teghem, J., Fortemps, Ph: Tuyttens: MOSA method: a tool for solving multiobjective combinatorial optimization problems. J. Multi-Crit. Decis. Anal. 8, 221–236 (1999)CrossRefzbMATHGoogle Scholar
  37. 37.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2003)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Luciana P. Assis
    • 1
  • André L. Maravilha
    • 2
  • Alessandro Vivas
    • 1
  • Felipe Campelo
    • 2
  • Jaime A. Ramírez
    • 2
  1. 1.Departamento de ComputaçãoUniversidade Federal dos Vales do Jequitinhonha e MucuriDiamantinaBrazil
  2. 2.Departamento de Engenharia ElétricaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations